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Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow
is studied with the probability density function �PDF� method. The joint PDF of velocity, turbulent
frequency and scalar concentration is represented by a large number of Lagrangian particles. A
stochastic near-wall PDF model combines the generalized Langevin model of Haworth and Pope
�Phys. Fluids 29, 387 �1986�� with Durbin’s �J. Fluid Mech. 249, 465 �1993�� method of elliptic
relaxation to provide a mathematically exact treatment of convective and viscous transport with a
nonlocal representation of the near-wall Reynolds stress anisotropy. The presence of walls is
incorporated through the imposition of no-slip and impermeability conditions on particles without
the use of damping or wall-functions. Information on the turbulent time scale is supplied by the
gamma-distribution model of van Slooten et al. �Phys. Fluids 10, 246 �1998��. Two different
micromixing models are compared that incorporate the effect of small scale mixing on the
transported scalar: the widely used interaction by exchange with the mean and the interaction by
exchange with the conditional mean model. Single-point velocity and concentration statistics are
compared to direct numerical simulation and experimental data at Re�=1080 based on the friction
velocity and the channel half width. The joint model accurately reproduces a wide variety of
conditional and unconditional statistics in both physical and composition space. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2803348�

I. INTRODUCTION

In the engineering industry and atmospheric transport
and dispersion modeling there is an increased use of compu-
tational methods to calculate complex turbulent flow fields.
Many of these computations depend on the k−� turbulence
model,4,5 while some are based on second-moment
closures.6–9 The aim of these statistical methods is to predict
the first and second moments of the turbulent velocity field,
respectively. In large-eddy simulation �LES� the large-scale
three-dimensional unsteady motions are represented exactly,
while the small-scale motions are parameterized. As long as
the transport-controlling processes of interest �e.g., mass,
momentum, and heat transfer in shear flows� are resolved,
LES predictions can be expected to be insensitive to the
details of residual-scale modeling. In applications such as
high-Reynolds-number turbulent combustion or near-wall
flows, however, where the important rate-controlling pro-
cesses occur below the resolved scales, the residual-scale
models directly influence the model predictions. Since there
is no universally “best” methodology that is applicable for
every type of practical flow, it is valuable to develop im-
provements for the full range of turbulence modeling ap-
proaches.

The development of probability density function �PDF�
methods is an effort to provide a higher-level statistical de-
scription of turbulent flows. The mean velocity and Reynolds
stresses are statistics of �and can be obtained from� the PDF
of velocity. In PDF methods, a transport equation is solved

directly for the PDF of the turbulent velocity field, rather
than for its moments as in Reynolds stress closures. There-
fore, in principle, a more complete statistical description can
be obtained. While for some flows �e.g., homogeneous tur-
bulence� this higher-level description may provide little ben-
efit over second moment closures, in general the fuller de-
scription is beneficial in allowing more processes to be
treated exactly and in providing more information that can be
used in the construction of closure models. Convection, for
example, can be exactly represented mathematically in the
PDF framework, eliminating the need for a closure
assumption.10 Similarly, defining the joint PDF of velocity
and species concentrations in a chemically reactive turbulent
flow allows for the treatment of chemical reactions without
the burden of closure assumptions for the highly nonlinear
chemical source terms.11 This latter advantage has been one
of the most important incentives for the development of PDF
methods, since previous attempts to provide moment clo-
sures for this term resulted in errors of several orders of
magnitude.12

In the case of turbulent flows around complex geom-
etries the presence of walls requires special treatment, since
traditional turbulence models are developed for high Rey-
nolds numbers and need to be modified in the vicinity of
walls. This is necessary because the Reynolds number ap-
proaches zero at the wall, the highest shear rate occurs near
the wall and the impermeability condition on the wall-
normal velocity affects the flow up to an integral scale from
the wall.13 Possible modifications involve damping
functions14–17 or wall-functions.18–21 In those turbulent flowsa�Electronic mail: jbakosi@gmu.edu
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where a higher level of statistical description is necessary
close to walls, adequate representation of the near-wall an-
isotropy and inhomogeneity is crucial. Durbin2 proposed a
Reynolds stress closure to address these issues. In his model,
the all-important process of pressure redistribution is mod-
eled through an elliptic equation by analogy with the Poisson
equation, which governs the pressure in incompressible
flows. This represents the nonlocal effect of the wall on the
Reynolds stresses through the fluctuating pressure terms. In
an effort to extend PDF methods to wall-bounded turbulent
flows, Durbin’s elliptic relaxation method has been com-
bined with the generalized Langevin model1 by Dreeben and
Pope.22,23 With minor simplifications this approach is closely
followed throughout the present study to model the joint
PDF of the turbulent velocity field.

The dispersion of scalars �e.g., temperature, mass, etc.�
in turbulent flows is relevant to a number of scientific phe-
nomena including engineering combustion and atmospheric
dispersion of pollutants. Reviews on the subject have been
compiled by Shraiman and Siggia24 and Warhaft.25 Several
experimental studies have been carried out in order to better
understand the behavior of transported scalars in homoge-
neous isotropic turbulence.26–28 A literature review of disper-
sion from a concentrated source in homogeneous but aniso-
tropic turbulent shear flows is given by Karnik and
Tavoularis.29 Inhomogeneous turbulence �e.g., the atmo-
spheric boundary layer or any practical turbulent flow� adds
a significant level of complexity to these cases. Extensive
measurements of the mean, variance, intermittency, probabil-
ity density functions, and spectra of scalar have been made
by Fackrell and Robins30 in a turbulent boundary layer. One-
point statistics in turbulent channel flow have recently been
reported by Lavertu and Mydlarski,31 whose experimental
data are used as the main reference point throughout the
current numerical modeling study.

Direct numerical simulation �DNS� has served as an im-
portant counterpart to measurements of turbulence at moder-
ate Reynolds numbers, shedding light on quantities that are
difficult to measure �e.g., Lagrangian statistics� and at loca-
tions where it is nearly impossible to measure �e.g., close to
walls�. Turbulent velocity statistics extracted from DNS of
channel flow have been reported by Moser et al.32 and Abe
et al.,33 while Vrieling and Nieuwstadt34 performed a DNS
study of dispersion of plumes from single and double line
sources.

A widely used model to incorporate the effects of small
scale mixing on the scalar in the PDF framework is the in-
teraction by exchange with the mean �IEM� model.35,36

While this model has the virtue of being simple and efficient,
it fails to comply with several physical constraints and desir-
able properties of an ideal mixing model.11 Although a vari-
ety of other mixing models have been proposed to satisfy
these properties,37 the IEM model remains widely used in
practice. Recently, increased attention has been devoted to
the interaction by exchange with the conditional mean
�IECM� model. Sawford38 has done a comparative study of
scalar mixing from line sources in homogeneous turbulence
employing both the IEM and IECM models, wherein he
demonstrated that the largest differences between the two

models occur in the near-field. He also investigated the two
models in a double scalar mixing layer39 with an emphasis
on those conditional statistics that frequently require closure
assumptions. Based on the IECM model, PDF micromixing
models have been developed for dispersion of passive pol-
lutants in the atmosphere by Luhar and Sawford40 and Cas-
siani et al.41–43 These authors compute scalar statistics in
homogeneous turbulence and in neutral, convective, and
canopy boundary layer by assuming a joint PDF for the tur-
bulent velocity field. However, no previous studies have
been conducted on modeling the joint PDF of velocity and a
passive scalar from a concentrated source in inhomogeneous
flows.

We have developed a complete PDF-IECM model for a
fully developed, turbulent, long-aspect-ratio channel flow,
where a passive scalar is continuously released from concen-
trated sources. The joint PDF of velocity, characteristic tur-
bulent frequency, and concentration of a passive scalar is
computed using stochastic equations. The flow is explicitly
modeled down to the viscous sublayer by imposing only the
no-slip and impermeability condition on particles without the
use of damping, or wall-functions. The high-level inhomoge-
neity and anisotropy of the Reynolds stress tensor at the wall
are captured by the elliptic relaxation method. A passive sca-
lar is released from a concentrated source at the channel
centerline and in the viscous wall-region. The effect of
small-scale mixing on the scalar is mainly modeled by the
IECM model. The performance and accuracy of the IECM
model compared to the simpler, but more widely used IEM
model are evaluated. Several one-point unconditional and
conditional statistics are presented in both physical and com-
position spaces. An emphasis is placed on common approxi-
mations of those conditional statistics that require closure
assumptions in concentration-only PDF methods, i.e., in
methods that assume the underlying turbulent velocity field.
The results are compared to the DNS data of Abe et al.33 and
the experimental data of Lavertu and Mydlarski.31 The ex-
periments were performed at two different Reynolds num-
bers �Re��u�h /�=520 and 1080 based on the friction veloc-
ity u�, the channel half-width h, and the kinematic viscosity
�� in a high-aspect-ratio turbulent channel flow, measuring
one point statistics of a scalar �temperature� emitted continu-
ously at three different wall-normal source locations from
concentrated line sources. Measurements were performed at
six different downstream locations between 4.0�x /h�22.0.

The remainder of the paper is organized as follows: In
Sec. II, the turbulence and micromixing models are de-
scribed. A brief account of the underlying numerical meth-
ods, various implementation details together with wall-
boundary conditions are presented in Sec. III. In Sec. IV,
one-point velocity statistics are compared to direct numerical
simulation data at Re�=1080, and a comparative assessment
of the two micromixing models with analytical and experi-
mental data is also given. Detailed statistics of scalar con-
centration calculated with the IECM micromixing model are
presented. Finally, conclusions are summarized in Sec. V.
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II. GOVERNING EQUATIONS

The governing equation for the motion of a viscous, in-
compressible fluid is the Navier-Stokes equation

�Ui
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+ Uj

�Ui

�xj
+

1

�

�P

�xi
= ��2Ui, �1�

where Ui, P, �, and � are the Eulerian velocity, pressure,
constant density, and kinematic viscosity, respectively. From
Eq. �1� an exact transport equation can be derived for the
one-point, one-time Eulerian joint PDF of velocity
f�V ;x , t�,10,44
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where V is the sample space variable of the stochastic veloc-
ity field U�x , t� and the pressure P has been decomposed into
mean �P� and fluctuating part p. Since the PDF f�V ;x , t�
contains all one-point statistics, mean velocity and Reynolds
stresses are readily available through

�Ui� = Vi fdV , �3�

�uiuj� = �Vi − �Ui���Vj − �Uj��fdV , �4�

where the fluctuation ui=Vi− �Ui� and the integrals are taken
over all the three-dimensional sample space of the velocity
field. While in principle, after modeling the unclosed condi-
tional statistics, Eq. �2� could be solved with traditional nu-
merical techniques, such as the finite difference or finite el-
ement method, the high dimensionality of the equation
prevents an efficient solution with these methods. In general,
Monte Carlo techniques are computationally more efficient
for problems with such high dimensions. In PDF methods,
therefore, a Lagrangian description has been preferred. The
Navier-Stokes equation �1� is widely used to model incom-
pressible flows in the Eulerian framework. An equivalent
model in the Lagrangian framework can be written as a sys-
tem of governing equations for Lagrangian particle locations
Xi and velocities Ui,

22

dXi = Uidt + �2��1/2dWi, �5�

dUi�t� = −
1

�

�P

�xi
dt + 2�

�2Ui

�xj� xj
dt + �2��1/2�Ui

�xj
dWj , �6�

where the isotropic Wiener process45 dWi, which is a known
stochastic process with zero mean and variance dt, is identi-
cal in both equations �the same exact series of Gaussian ran-
dom numbers� and it is understood that the Eulerian fields on
the right-hand side are evaluated at the particle locations Xi.
Equation �5� governs the position of a stochastic fluid par-
ticle which undergoes both convective and molecular mo-

tion. In other words, besides convection the particle diffuses
in physical space with coefficient �, thus it carries momen-
tum as molecules do with identical statistics, as in Brownian
motion.46 Each of the above three descriptions, i.e., Eqs. �1�,
�2�, �5�, and �6�, represents the viscous stress exactly. A re-
markable feature of the PDF formulation is that the effects of
convection and viscous diffusion, fundamental processes in
near-wall turbulent flows, have exact mathematical represen-
tations, therefore need no closure assumptions. If Reynolds
decomposition is applied to Eq. �6�,

dUi�t� = −
1
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�xi

dt + 2�
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dt + �2��1/2�ui

�xj
dWj , �7�

the last three terms are unclosed. Closure hypotheses for
these terms can be made either by suggesting approximations
for the PDF fluxes �represented by the conditional expecta-
tions� in Eq. �2� or by proposing stochastic processes that
simulate the physical phenomena represented by the second
row of Eq. �7�. For an overview of the wide variety of mod-
eling approaches see the review compiled by Dopazo.37 To
model the increments in particle velocity the generalized
Langevin model �GLM� of Haworth and Pope1 is adopted
here

dUi�t� = −
1

�

��P�
�xi

dt + 2�
� 2�Ui�
�xj � xj

dt + �2��1/2��Ui�
�xj

dWj

+ Gij�U j − �Uj��dt + �C0��1/2dWi�, �8�

where Gij is a second-order tensor function of velocity sta-
tistics, C0 is a positive constant, � denotes the rate of dissi-
pation of turbulent kinetic energy, and dWi� is another Wiener
process. By comparing Eqs. �7� and �8�, it is apparent that
the terms in Gij and C0 jointly model the last three terms in
Eq. �7� representing pressure redistribution and anisotropic
dissipation of turbulent kinetic energy.10 A particular specifi-
cation of Gij corresponds to a particular Lagrangian stochas-
tic model for the instantaneous particle velocity increment.
Following Dreeben and Pope,23 we specify Gij and C0 em-
ploying Durbin’s elliptic relaxation method using the con-
straint

�1 + 3
2C0�� + Gij�uiuj� = 0, �9�

which ensures that the kinetic energy evolves correctly in
homogeneous turbulence.10 Introducing the tensor �ij to
characterize the nonlocal effects Gij and C0 are defined as

Gij =

�ij −
�

2
�ij

k
and C0 =

− 2�ij�uiuj�
3k�

, �10�

where k= 1 � 2 �uiui� represents the turbulent kinetic energy.
The nonlocal term �ij is specified with the following elliptic
relaxation equation:
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is the Reynolds stress anisotropy, ��� denotes the mean char-
acteristic turbulent frequency and C1, C2, 	5, Cv are model
constants. The characteristic length scale L is defined by the
maximum of the turbulent and Kolmogorov length scales

L = CL max�C


k3/2

�
,C���3

�
�1/4� , �15�

with

C
 = 1.0 + 1.3nini, �16�

where ni is the unit wall-normal of the closest wall-element
pointing outward of the flow domain, while CL and C� are
model constants. The definition of C
 in Eq. �16� signifies a
slight departure from the original model by attributing aniso-
tropic and wall-dependent behavior to its value. In the case
of a channel flow where the wall is aligned with x, the wall-
normal n= �0,−1,0�. This gives C
=2.3 in the computation
of �22 in Eq. �11� and C
=1.0 for all other components. The
modification improves the centerline behavior of the wall-
normal Reynolds stress component �v2� and in turn the cross-
stream mixing of the passive scalar. Another departure from
the original model is the application of the elliptic term
L2�2�ij �as originally proposed by Durbin2� as opposed to
L�2�L�ij�. This simplification was adopted because no vis-
ible improvement has been found by employing the second,
numerically more expensive term.

The right-hand side of Eq. �11� may be any local model
for pressure redistribution; here we follow Dreeben and
Pope23 and use the stochastic Lagrangian equivalent of a
modified isotropization of production �IP� model proposed
by Pope.47 Close to the wall, the elliptic term on the left-
hand side of Eq. �11� brings out the nonlocal, highly aniso-
tropic behavior of the Reynolds stress tensor, whereas far
from the wall the significance of the elliptic term vanishes
and the local model on the right-hand side is recovered.

The above model needs to be augmented by an equation
for a quantity that provides length-, or time-scale information
for the turbulence. With traditional moment closures the
most common approach is to solve a model equation for the
turbulent kinetic energy dissipation rate � itself as proposed
by Hanjalić and Launder.8 An alternative method is to solve
an equation for the mean characteristic turbulent frequency48

��� and to define

� = k��� . �17�

In PDF methods, however, a fully Lagrangian description
has been preferred. A Lagrangian stochastic model has been
developed for the instantaneous particle frequency � by van
Slooten et al.3 of which different forms exist, but the sim-
plest formulation can be cast into

d� = − C3����� − ����dt − S�����dt

+ �2C3C4���2��1/2dW , �18�

where S� is a source/sink term for the mean turbulent fre-
quency

S� = C�2 − C�1

P
�

, �19�

where P=−�uiuj�� �Ui� /�xj is the production of turbulent ki-
netic energy, dW is a scalar-valued Wiener-process, while
C3 ,C4 ,C�1 and C�2 are model constants. Since the no-slip
condition would incorrectly force � to zero at the wall, Eq.
�17� needs to be modified, thus the dissipation is defined as23

� = ����k + �CT
2���� , �20�

where CT is also a model constant. A simplification of the
original model for the turbulent frequency employed by
Dreeben and Pope23 is the elimination of the ad hoc source
term involving an additional constant, since no obvious im-
provement has been found by including it.

Similarly to the model equations for the Lagrangian ve-
locity and frequency increments, the evolution equations of
the passive scalar are also given in Lagrangian form, which
define the two micromixing models that are investigated in
this study,

d� = −
1

tm
�� − ���dt �IEM� , �21�

d� = −
1

tm
�� − ��V��dt �IECM� , �22�

where � represents the sample space variable of the species
concentration , tm is the micromixing time scale, while
� �V�= � �U�x , t�=V� denotes the expected value of the
mean concentration conditional on the velocity. Both of these
models represent the physical process of dissipation and re-
flect the concept of relaxation towards a scalar mean with the
characteristic time scale tm. The difference is that in the IEM
model, all particles that have similar position interact with
each other, while in the IECM model only those particles
interact that also have similar velocities, e.g., fluid elements
that belong to the same eddy.

It can be shown that in the case of homogeneous turbu-
lent mixing with no mean scalar gradient the two models are
equivalent49 and the micromixing time scale tm is propor-
tional to the Kolmogorov time scale �=k /�. In the inhomo-
geneous case of a concentrated source, however, there are
various stages of the spreading of the plume requiring differ-
ent characterizations of tm. In this case, the formal simplicity
of the IEM and IECM models is a drawback, since a single
scalar parameter tm has to account for all the correct physics.
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The time scale should be inhomogeneous and should depend
not only on the local turbulence characteristics but also on
the source location, type, size, distribution, and strength. Be-
cause of this complexity, a general flow-independent speci-
fication of tm has been elusive. In the following, we define a
micromixing time scale for a passive scalar released from a
concentrated source into an inhomogeneous flow surrounded
by no-slip walls.

In general, tm is assumed to be proportional to the time
scale of the instantaneous plume.38,41 Once the initial condi-
tions are forgotten, theoretical results50 show that the time
scale of the instantaneous plume is linear in t in the inertial
subrange and is proportional to the turbulence time scale in
the far field, when the instantaneous plume grows at the
same rate as the mean plume. Based on these considerations
the micromixing time scale is computed according to

tm = min�Cs� r0
2

�
�1/3

+ Ct
x

�U�c
;max� k

�
,CT��

�
�� , �23�

where r0 denotes the radius of the source, �U�c is the mean
velocity at the centerline of the channel, while Cs and Ct are
micromixing model constants. This definition reflects the
three stages of the spreading of the plume. In the first stage,
the time scale of the plume is proportional to that of the
source.51 Accordingly, the first term in the min operator rep-
resents the effect of the source. In the second stage tm in-
creases linearly as the scalar is dispersed downstream and the
distance x from the source grows.50 In the final stage, the
time scale is capped with the characteristic time scale of the
turbulence, which provides an upper limit in the third term of
Eq. �23�. Following Durbin52 this is defined as the maximum
of the turbulent and Kolmogorov time scales: far from the
boundaries it becomes k /�, whereas near a surface, where
k→0, the Kolmogorov time scale provides a lower bound as
CT�� /��1/2.

The equations to model the joint PDF of velocity and
turbulent frequency closely follow the work of Dreeben and
Pope.23 Slight modifications consist of

• the anisotropic definition of length scale L in Eqs. �15� and
�16�,

• the application of the elliptic term L2�2�ij instead of
L�2�L�ij� in Eq. �11�, and

• the elimination of an ad hoc source term in Eq. �19�.

These modifications do not make the methodology less gen-
eral or flow-dependent, i.e., the velocity model remains com-
plete. On the other hand, the specification of tm in Eq. �23� is
somewhat flow-dependent, since we assume that the scalar
plume will be dispersed in the x �downstream� direction.

In summary, the flow is represented by a large number of
Lagrangian particles representing a finite sample of all fluid
particles in the domain. Each particle has position Xi and
carries its velocity Ui, turbulent frequency �, and concentra-
tion �. These particle properties are advanced according to
Eqs. �5�, �8�, and �18� and either Eqs. �21� or �22�, respec-
tively. The discretized particle equations are advanced in
time by the forward Euler-Maruyama method �Ref. 80�. This
method was preferred to the more involved exponential

scheme that was originally suggested by Dreeben and
Pope,23 since the code is sufficiently stable with the simpler
and computationally less expensive Euler method as well.

III. NUMERICAL METHOD

In turbulent channel flow after an initial development
region, the statistics of fluid dynamics �e.g., turbulent veloc-
ity and frequency� are expected to become homogeneous in
the streamwise direction, while strongly inhomogeneous in
the wall-normal direction. A passive scalar released into this
flow from a concentrated source initially exhibits high inho-
mogeneity and only far downstream becomes fully mixed.
We will separately discuss the numerical issues related to the
streamwise statistically homogeneous one-dimensional fluid
dynamics and the inhomogeneous two-dimensional scalar
field.

A. Modeling the fluid dynamics

While the velocity and turbulent frequency statistics be-
come one-dimensional, both the streamwise x and cross-
stream y components of the particle position are retained so
that particles can represent the streamwise inhomogeneity of
the scalar. A one-dimensional grid, that is refined at the wall,
is used to compute Eulerian statistics of the velocity and
turbulent frequency by ensemble averaging in elements. The
elliptic-relaxation equation �11� is also solved on this grid
with a finite element method. A constant unit mean stream-
wise pressure gradient is imposed to drive the flow and build
up the numerical solution. The cross-stream mean pressure
gradient is obtained by satisfying the cross-stream mean mo-
mentum equation

1

�

d�P�
dy

= −
d�v2�

dy
. �24�

Wall-boundary conditions for the particles are the same as
suggested by Dreeben and Pope23 but repeated here for clar-
ity. Over any given time-interval a particle undergoing re-
flected Brownian motion in the vicinity of a wall may strike
the wall infinitely many times.10 Therefore wall-conditions
have to be enforced on particles that either penetrate or pos-
sibly penetrate the wall during time step �t, the probability
of which can be calculated by53

P = exp�− Y0Y
��t

� , �25�

where Y0 and Y denote the distance of the particle from the
wall at the previous and current time step, respectively. Thus
particle wall-conditions are applied if

Y � 0, �26�

or if

Y � 0 and exp�− Y0Y
��t

� � � , �27�

where � is a random variable with a standard uniform distri-
bution. The imposed wall-conditions are
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Ui = 0 �no slip� �28�

and the particle frequency is sampled from a gamma distri-
bution with mean and variance

��� =
1

CT

d�2k

dy
and C4���2. �29�

Only half of the channel is retained for the purpose of mod-
eling the fluid dynamics. The particle conditions for the cen-
terline are symmetry conditions, i.e., if the particle tries to
leave the domain through the centerline, it is reflected back
with opposite normal velocity. Consistently with the above
particle conditions, boundary conditions are imposed on the
Eulerian statistics as well. At the wall, the mean velocity and
the Reynolds stress tensor are forced to zero. The mean fre-
quency ��� is set according to Eq. �29�. At the centerline, the
shear Reynolds stress �uv� is set to zero. At the wall in the
elliptic-relaxation Eq. �11�, �ij is set according to �ij

=−4.5�ninj. In the current case the wall is aligned with y
=0, thus only the wall-normal component is nonzero, �22

=−4.5�. At the centerline, symmetry conditions are applied
for �ij, i.e., homogeneous Dirichlet conditions are applied for
the off-diagonal components and homogeneous Neumann
conditions for the diagonal components.

An equal number of particles are uniformly generated
into each element and initial particle velocities are sampled
from a Gaussian distribution with zero mean and variance
2/3, i.e., the initial Reynolds stress tensor is isotropic with
unit turbulent kinetic energy. Initial particle frequencies are
sampled from a gamma distribution with unit mean and vari-
ance 1/4.

B. Modeling the passive scalar

A passive, inert scalar is released from a concentrated
source. The scalar statistics are inhomogeneous and in gen-
eral not symmetric about the channel centerline, thus a sec-
ond, two-dimensional grid is employed to calculate scalar
statistics. The use of separate grids for the fluid dynamics
and scalar fields enables the grid refinement to be concen-
trated on different parts of the domain, i.e., the scalar-grid
can be refined around the source, while the fluid dynamics-
grid is refined at the wall. The two-dimensional grid is un-
structured and consists of triangles. The role of this mesh is
twofold: it is used for computing Eulerian scalar statistics
and for tracking particles on the domain. Since the scalar is
passive, only one-way coupling between the two grids is
necessary. This is accomplished by using the local velocity
statistics computed in the 1D elements for those 2D elements
which lie closest to them in the wall-normal coordinate di-
rection. The Eulerian statistics in both grids are computed by
a two-step procedure: first ensemble averaging is used to
compute statistics in elements, then these element-based sta-
tistics are transferred to nodes by averaging the elements
surrounding the nodes. When Eulerian statistics are needed
in particle equations, the average of the nodal values are used
for all the particles that reside in the given element. Spatial
derivatives are computed with linear finite element shape
functions for triangles.54 The long two-dimensional rectangu-

lar domain is also subdivided into several equally sized bins.
The velocity and turbulent frequency statistics are computed
using the one-dimensional grid in which only particles in the
first bin participate. The position of these particles are then
copied to all downstream bins and mirrored to the upper half
of the channel. If the particle hits the centerline, its concen-
tration is exchanged with its mirrored pair on the upper half,
allowing a possible nonsymmetric behavior of the scalar.

In order to numerically compute the expected value of
the mean concentration conditional on the velocity field
� �V� in Eq. �22�, one needs to discretize the velocity
sample space V and compute different means for each
sample space bin. A straightforward way to implement this is
to equidistantly divide the three-dimensional velocity space
into cubical bins and compute separate scalar means for each
cube using those particles whose velocity fall into the given
cube. A better way of choosing the conditioning intervals for
each dimension is to define their endpoints so that the prob-
abilities of the particle velocities falling into the bins are
equal. For a Gaussian velocity PDF these endpoints can be
obtained from statistical tables as suggested by Fox49 for
homogeneous flows and by Cassiani et al. �Ref 81� for non-
homogeneous flows. If the approximate shape of the joint
velocity PDF is not known, as in our case, a different sort of
algorithm is required to homogenize the statistical error over
the sample space.

Note that the sample-spatial distribution of the condi-
tioning intervals has to be neither equidistant nor the same in
all three dimensions and can also vary from element to ele-
ment. Therefore, we determine the binning dynamically so
that no bin remains without particles and the number of par-
ticles in each bin is approximately the same. A judicious
sorting and grouping of the particles according to their ve-
locity components can be used to achieve this. We compute
conditioned means in each triangular element as follows. For
a binning of 2�2�2 �i.e., the desired total number of bins
is 8�, first the particles residing in the triangle are sorted
according to their U velocity component. Then both the first
and the second halves of the group are separately sorted ac-
cording to their V velocity component. After further dividing
both halves into halves again, the quarters are sorted accord-
ing to the W component. Finally, halving the four quarters
into eight subgroups, we compute scalar means for each of
these eight subgroups. This procedure is general, it employs
no assumptions about the shape of the velocity PDF and
homogenizes the statistical error over the sample space. It
also ensures that there will be no empty bins as long as the
number of conditioning bins and the number of particles/
elements are reasonable. In principle, the number of subdi-
visions �i.e., the sample-spatial refinement� can be arbitrary.
We employ the binning structure of 4�4�4 throughout the
current calculations.

In order to reduce the statistical error during the compu-
tation of � �V�, Fox49 proposed an alternative method in
which the three-dimensional velocity space is projected onto
a one-dimensional subspace where the sample-spatial dis-
cretization is carried out. This way, a relatively large number
of particles can be used to obtain a local � �V�, which re-
sults in a smaller statistical error. The projection however is
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exact only in the case of a passive inert scalar in homoge-
neous turbulent shear flows with a uniform mean scalar gra-
dient. In the current, more general inhomogeneous context,
this projection could still be used as a modeling
assumption.49 To explore the error introduced by the projec-
tion in modeling inhomogeneous flows, we implemented and
tested this method for the channel flow. For both releases �to
be discussed in the next sections� we found that the projec-
tion has the largest influence on the scalar PDFs by homog-
enizing their high peaks, i.e., shaping them closer to a Gauss-
ian. In the case of the centerline release, an artifact of
double-peaks in the rms profiles of the cross-stream distribu-
tion of the passive scalar can also be attributed solely to this
projection method. In the following sections, only the
former, more general, three-dimensional method was used in
conjunction with the IECM model with 43 bins.

IV. RESULTS

The model has been run for the case of fully developed
channel flow at Re�=1080 based on the friction velocity u�

and the channel half-width h with a passive scalar released
from a concentrated source at the centerline �ys /h=1.0� and
in the viscous wall region �ys /h=0.067�. The results are di-
vided into a discussion of the fluid dynamics statistics �Sec.

IV A�, a comparison of the two micromixing models �Sec.
IV B�, and a presentation of unconditional �Sec. IV C� and
conditional �Sec. IV D� scalar statistics.

A. Fluid dynamics

The equations to model the velocity and turbulent fre-
quency have been solved on a 100-cell one-dimensional grid
with 500 particles per cell. The applied model constants are
displayed in Table I. The computed cross-stream profiles of
mean streamwise velocity, the nonzero components of the
Reynolds stress tensor and the rate of dissipation of turbulent
kinetic energy are compared with the DNS data of Abe et
al.33 at Re�=1020 in Fig. 1. Previous PDF modeling studies
employing the elliptic relaxation technique22,23,55 have been
conducted up to Re�=590. The high-level inhomogeneity
and anisotropy in the viscous wall region are well repre-
sented by the technique at this higher Reynolds number as
well. The purpose of including the parameter C
 in Eq. �15�
of the wall-normal component of �ij is to correct the over-
prediction of the wall-normal Reynolds stress component
�v2� at the centerline. This facilitates the correct behavior of
the mean of the dispersed passive scalar in the center region
of the channel �presented in Sec. IV B�.

B. Comparison of the IEM and IECM
micromixing models

An often raised criticism of the IEM model is that there
is no physical basis for assuming the molecular mixing to be
independent of the velocity field. This assumption gives rise
to a spurious �and unphysical� source of scalar flux.56 This

TABLE I. Constants for modeling the joint PDF of velocity and frequency.

C1 C2 C3 C4 CT CL C� Cv 	5 C�1 C�2

1.85 0.63 5.0 0.25 6.0 0.134 72.0 1.4 0.1 0.5 0.73

FIG. 1. Cross-stream profiles of �a� the mean streamwise velocity, �b� the diagonal components of the Reynolds stress tensor, �c� the shear Reynolds stress,
and �d� the rate of dissipation of turbulent kinetic energy. Lines – PDF calculation, symbols – DNS data of Abe et al. �Ref. 33�. All quantities are normalized
by the friction velocity and the channel half-width. The DNS data is scaled from Re�=1020 to 1080.
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behavior of the IEM model has also been demonstrated for
line sources in homogeneous grid turbulence.38 The situation
can be remedied by introducing the velocity-conditioned sca-
lar mean � �V�, which leads to the IECM model. Often in-
voked as a desirable property of micromixing models is that
the scalar PDF should tend to a Gaussian for homogeneous
turbulent mixing10,11 �i.e., statistically homogeneous scalar
field in homogeneous isotropic turbulence�. While math-
ematically a Gaussian does not satisfy the boundedness prop-
erty of the advection-diffusion scalar transport equation, it is
generally assumed that the limiting form of the PDF can be
reasonably approximated by a clipped Gaussian. Also,
Chatwin57,58 argued that in most practical cases, where the
flow is inhomogeneous, the scalar PDF is better approxi-
mated by non-Gaussian functions, which should ultimately
converge to a Dirac delta function about the mean,
���− ���, where �� approaches a positive value in bounded
domains and zero in unbounded domains.

In fully developed turbulent channel flow the center re-
gion of the channel may be considered approximately
homogeneous.34,59 Thus for a centerline source, up to a cer-
tain downstream distance where the plume still lies com-
pletely in the center region, the mean scalar field can be
described by Taylor’s theory of absolute dispersion.60 Like-
wise, numerical simulations are expected to reproduce ex-
perimental measurements of grid turbulence. According to
the theory, the mean-square particle displacement �Y2� is re-
lated to the autocorrelation function of the Lagrangian veloc-
ity RL= �v�t�v�t��� / �v2� as

�Y2� = 2�v2�
0

t 
0

t�
RL�
�d
dt�, �30�

where it is assumed that in stationary turbulence RL depends
only on the time difference 
= t− t�. Lagrangian statistics
such as RL�
� are difficult to determine experimentally. An
analytical expression that is consistent with the theoretically
predicted behavior of the Lagrangian spectrum in the inertial
subrange is61

RL�
� = exp�−
�
�
TL
� , �31�

where TL denotes the Lagrangian integral time scale. Substi-
tuting Eq. �31� into Eq. �30� the following analytical expres-
sion can be obtained for the root-mean-square particle dis-
placement

�y
2 = �Y2� = 2�v2�TL

2� t

TL
− 1 + exp�−

t

TL
�� . �32�

This expression can be used to approximate the spread of the
plume that is released at the centerline of the channel. As the
Lagrangian time scale we take

TL =
2�v2�
C0�

, �33�

where C0 is usually taken as the Lagrangian velocity struc-
ture function inertial subrange constant,39,62 which ensures
consistency of the Langevin equation �8� with the Kolmog-

orov hypothesis in stationary isotropic turbulence.10 In the
current case the value of C0 is defined by Eq. �10� and is no
longer a constant, but depends on the velocity statistics. For
the purpose of the current analytical approximation, how-
ever, a constant value �0.8� has been estimated as the spatial
average of C0 computed by Eq. �10�. For the cross-stream
Reynolds stress �v2� and the dissipation rate � their respec-
tive centerline values are employed. In analogy with time t in
homogeneous turbulence, we define t=x / �U�c, where x is the
downstream distance from the source and �U�c is the mean
velocity at the centerline. Thus the cross-stream mean scalar
profiles predicted by Eq. �30� are obtained from the Gaussian
distribution

��y�� =
Q

�U�c�2��y
2�1/2 exp�−

�y − ys�2

2�y
2 � , �34�

where Q is the source strength and ys is the cross-stream
location of the source.

After the velocity field converged to a statistically sta-
tionary state, a passive scalar is continuously released from a
concentrated source. Two release cases have been investi-
gated, where the scalar has been released at the centerline
�ys /h=1.0� and in the close vicinity of the wall �ys /h
=0.067�. The viscous wall region experiences the most vig-
orous turbulent activity. The turbulent kinetic energy, its pro-
duction, and its dissipation and the level of anisotropy all
experience their peak values in this region, see also Fig. 1�b�.
This suggests a significantly different level of turbulent mix-
ing between the two release cases. Accordingly, the constants
that determine the behavior of the micromixing time scales
have been selected differently. Both the IEM and IECM
models have been investigated with the micromixing time
scale defined by Eq. �23� using the model constants dis-
played in Table II.

The different behavior of the two models is demon-
strated in Fig. 2, which shows mean concentration profiles
for the centerline release computed by both the IEM and
IECM models together with the analytical Gaussian solution
�34� and the experimental data of Lavertu and Mydlarski31

for turbulent channel flow. Indeed, the downstream evolution
of the cross-stream mean concentration profiles computed by
the IECM model follows the Gaussians and is expected to
deviate far downstream in the vicinity of the walls, where the
effect of the walls is no longer negligible. It is also apparent
in Fig. 2�b� that the IEM model changes the mean concen-
tration, as expected. As discussed by Lavertu and
Mydlarski,31 the measurements of the mean concentration
experience the largest uncertainty due to inaccuracies in es-
timating the free-stream mean. Also, to improve the signal to
noise ratio far downstream, a thicker wire had to be em-

TABLE II. Model constants of the micromixing time scale tm defined by Eq.
�23� for both the IEM and IECM models.

Source location Cs Ct

Centerline ys /h=1.0 y+=1080 0.02 0.7

Wall ys /h=0.067 y+=72 1.5 0.001
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ployed for measurements performed on the second half of
the length considered, i.e., x /h�11.0. These difficulties are
probably the main source of the discrepancy between the
experimental data and the agreeing analytical and numerical
results for the case of the centerline release. Because of these
inconsistencies only results for the first half of the measured
channel length �x /h�11.0� are considered in the current
study.

The marginal PDF of scalar concentration can be ob-
tained from the joint PDF f�V ,�� by integrating over the
velocity space

f̂��� = f�V,��dV . �35�

According to experimental data in grid turbulence38 the
skewness at the centerline is expected to be negative close to
the source and to become positive only farther downstream.
At x /h=7.4, y /h=1.0 the temperature PDF measured by La-
vertu and Mydlarski31 suggests positive skewness in accor-
dance with Sawford’s data.38 In Figs. 2�c� and 2�d� the nor-
malized PDFs of scalar concentration fluctuations at this
location as computed by both models are depicted. As op-
posed to the IEM model prediction, both the location of the
peak and the overall shape of the PDF are captured correctly
by the IECM model.

The different behavior of the two micromixing models is
apparent in all one point statistics considered, with the IECM
model producing a closer agreement to experimental data.

The price to pay for the higher accuracy is an additional
30%–40% in CPU time as compared to the IEM model. In
the remaining section only the IECM model results are con-
sidered.

C. Scalar statistics with the IECM model

Cross-stream distributions of the first four moments of
the scalar concentration at different downstream locations
are shown in Fig. 3 for both release scenarios. The results are
compared to experimental data where available.

The mean and root-mean-square �rms� profiles are nor-
malized by their respective peak values. The width of the
mean concentration profiles is most affected by the wall-
normal Reynolds stress component �v2� which is responsible
for cross-stream mixing. Due to the underprediction of this
component by the velocity model throughout most of the
inner layer �y+�800� and the uncertainties in the experimen-
tal data mentioned in Sec. IV B, the mean concentration pro-
files in Fig. 3 should be considered at most qualitative.

For the wall-release, the rms profiles display a clear drift
of the peaks towards the centerline with increasing distance
from the source Fig. 3�f�. This tendency has also been ob-
served in turbulent boundary layers by Fackrell and Robins30

and Raupach and Legg.63 Since the scalar is statistically
symmetric in the case of the centerline release, no transverse
drift of the rms profiles is expected, Fig. 3�b�. Double peak-
ing of the rms profiles has been observed in homogeneous

FIG. 2. Cross-stream mean concentration profiles normalized by their respective peak values at different downstream locations as computed by the �a� IECM
and �b� IEM models for the centerline release. Lines – PDF calculation at solid line, x /h=4.0, dashed line, x /h=7.4 and dot-dashed line, x /h=10.8, hollow
symbols – analytical Gaussians using Eq. �34� at �, x /h=4.0; �, x /h=7.4, and �, x /h=10.8, filled symbols – experimental data of Lavertu and Mydlarski
�Ref. 31� at •, x /h=4.0 and �, x /h=7.4. Also shown, PDFs of scalar concentration fluctuations at �x /h=7.4, y /h=1.0� for the �c� IECM and �d� IEM models.
Lines – computation, symbols – experimental data.
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turbulence by Warhaft25 and Karnik and Tavoularis,29 noting
that the profiles are initially double-peaked close to the
source, then single-peaked for a short distance and then again
double-peaked far downstream. Lavertu and Mydlarski31

found no double peaks in their measurements. Correspond-
ing to the channel flow experiments, the PDF simulation ex-
hibits no double-peaking in the rms profiles. Applying the
projection method to compute � �V� as described in

FIG. 3. Cross-stream distributions of the first four moments of scalar concentration at different downstream locations for �a�–�d� the centerline release
�ys /h=1.0� and �e�–�h� the wall release �ys /h=0.067�. Lines – calculations, symbols – experimental data at solid line, •, x /h=4.0; dashed line, �, x /h
=7.4 and dot-dashed line, �, x /h=10.8. The horizontal dashed lines for the skewness and kurtosis profiles indicate the Gaussian values of 0 and 3,
respectively. Note the logarithmic scale of the kurtosis profiles.
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Sec. III B results in double peaking of the rms profiles,
which is possibly due to a loss of statistical information due
to its Gaussian assumption of the velocity PDF.

Skewness profiles are depicted in Figs. 3�c� and 3�g�.
For both release cases, near the centers of the plumes the
skewness is close to zero, indicating that the PDFs of the
scalar concentration downstream of the sources are approxi-
mately symmetric. Towards the edges of the plumes how-
ever, the PDFs become very highly positively skewed, with a
sudden drop to zero in the skewness outside of the plume. As
observed by Lavertu and Mydlarski,31 the downstream evo-
lutions of the skewness profiles indicate the eventual mixing
of the plume, with the high peaks decreasing. In the current
simulations the high skewness-peaks at the edge of the
plumes start increasing first to even higher levels �up to
about x /h=10.0� and only then start decreasing. In the case
of the wall-release, the negative skewness in the viscous wall
region �also apparent in the experimental data� becomes even

more pronounced in the buffer layer and in the viscous sub-
layer, where experimental data are no longer available. The
kurtosis values are close to the Gaussian value of 3 at the
cross-stream location of the sources, but show significant
departures towards the edges of the plume.

Figure 4 shows downstream evolutions of the peak of
the mean and rms and the width of the mean concentration
profiles. In homogeneous isotropic turbulence and homoge-
neous turbulent shear flow the decay rate of the peak of the
mean concentration profiles is reasonably well described by
a power law of the form ��peak�xn. In the present inhomo-
geneous flow Lavertu and Mydlarski,31 based on the experi-
ments, suggest decay exponents of n�−0.7 and −0.6 for the
wall and centerline sources, respectively. These evolutions
are compared to experimental data in Figs. 4�a� and 4�b�.
Downstream evolutions of the width of the mean concentra-
tion profiles �mean are plotted in Figs. 4�c� and 4�d� for the

FIG. 4. Downstream evolutions of �a�, �b� the peak mean scalar concentration, �c�, �d� the width of the mean concentration and �e�, �f� the peak of the rms
profiles for the centerline and wall releases, respectively. Solid lines – numerical results, symbols – experimental data.
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two releases. According to the experimental data, these do
not exhibit power-law dependence, as is the case in homoge-
neous flows. Since the simulations are carried out only on the
first half of the measured channel length, the three down-
stream locations are not sufficient to unambiguously decide
whether the simulation data exhibits power-law behavior for
the peaks and widths of the mean profiles.

The downstream decay of the peak values of the rms
profiles can be well-approximated by a power-law of the
form ��2�peak

1/2 �xn, similar to homogeneous shear flow and
isotropic grid-generated turbulence, Figs. 4�e� and 4�f�. The
experiments suggest n=−1 for both releases.

Probability density functions of scalar concentration
fluctuations are depicted in Fig. 5 for both release cases. The
cross-stream location of these PDFs are chosen to coincide
with that of their respective sources, i.e., y /h=1.0 for the
centerline release and y /h=0.067 for the wall-release. Two
downstream locations are plotted, at the first and at the third
location from the sources measured by Lavertu and
Mydlarski,31 at x /h=4.0 and x /h=10.8, respectively. While
the PDFs for the centerline release are in reasonable agree-
ment with the experiments, some discrepancies are apparent
in the wall-release case. A possible reason behind this dis-
parity is the ad hoc specification of the mixing time scale in
Eq. �23�, which is mostly based on theoretical considerations
and experimental observations in homogeneous turbulence.

D. Conditional statistics

The current model solves for the full joint PDF of the
turbulent velocity, frequency, and scalar concentration.
Therefore we can also examine those quantities that require
closure assumptions in composition-only PDF methods. This
methods are often used in combustion engineering to model
complex chemical reactions in a given turbulent flow or in
dispersion modeling in the atmospheric boundary layer. In
these cases the simplest approach is to assume the shape of
the velocity PDF and numerically solve a set of coupled
model equations that govern the evolution of the joint PDF
of the individual species concentrations in composition
space. The conservation equation for a single reactive scalar
is

�

�t
+ U · � = ��2 + S��x,t�� , �36�

where S�� is the chemical source term. In high-Reynolds-
number, constant-property flow the PDF of a reactive scalar
f�� ;x , t� is governed by10,37

� f

�t
+ �Ui�

� f

�xi
= ��2f −

�

�xi
�f�ui����

−
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��2� f		�
�
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�37�

or alternatively

� f

�t
+

�

�xi
�f��Ui� + �ui����� = −

�

��
�f����2��� + S����� .

�38�

An attractive feature of these formulations is that the usually
highly nonlinear chemical source term is in closed form.
Closure assumptions, however, are necessary for the velocity
fluctuations conditional on the scalar concentration �ui ���
and the conditional scalar dissipation �2�� ·� ��� or the
conditional scalar diffusion ���2 ���. Since for the current

case S��=0, the marginal scalar PDF f̂��� defined in Eq.
�35� is equal to f, thus in the remaining text we use them
interchangeably.

For the convective term Dopazo64 applied the linear ap-
proximation

�ui��� =
�ui��
��2�

�� − ��� , �39�

to compute the centerline evolution of the temperature PDF
in a turbulent axisymmetric heated jet. This linear approxi-
mation is exact for joint Gaussian velocity and scalar fluc-
tuations. While many experiments65–69 confirm the linearity
of the conditional mean velocity around the local mean con-
served scalar, Kuznetsov and Sabel’nikov70 observe that
most of the experimental data show departure from this lin-
ear relationship when ��− ��� is large. Experimental data

FIG. 5. Probability density functions of scalar concentration fluctuations at selected downstream locations for the �a� centerline and �b� wall-releases at the
cross-stream location of their respective sources �i.e., y /h=1.0 and y /h=0.067, respectively�. Lines – calculation, symbols – experimental data at solid line,
•, x /h=4.0 and dot-dashed line, �, x /h=10.8.
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from Sreenivasan and Antonia69 and Bilger et al.71 also show
that in inhomogeneous flows the joint PDF of velocity and
scalar is not Gaussian, which makes the above linear ap-
proximation dubious in a general case. Nevertheless, this lin-
ear model is sometimes applied to inhomogeneous scalar
fields because of its simplicity.

Another commonly employed approximation is to in-
voke the gradient diffusion hypothesis

− f�ui��� = �T
� f

�xi
, �40�

where �T�x , t� is the turbulent diffusivity. In the current case,
we specify the turbulent viscosity �T based on the traditional
k−� closure and relate it to �T with the turbulent Prandtl
number �T as

�T =
�T

�T
=

C�

�T

k2

�
, �41�

where C�=0.09 is the usual constant in the k−� model and
we choose �T=0.8.

In Fig. 6�a� the downstream evolution of the cross-
stream velocity fluctuation conditioned on the scalar is de-
picted for the wall-release case. Both locations are at the
height of the source, i.e., y /h=0.067. The concentration axis
for both locations is scaled between their respective local
minimum and maximum concentration values, �min and
�max. Note that the model curves show higher negative ve-
locity for low-concentration particles as the distance from
the source increases. This is expected, since particles deep
inside the plume can have very low concentrations only if
they did not come from the source but traveled very fast
from above, so that they did not have much time to exchange
concentration with the source material. As the plume
spreads, only particles with stronger negative velocity can
maintain their low concentration values. Likewise, as the
center of the plume moves towards the centerline of the
channel, high-concentration particles also need to have stron-
ger negative velocities to escape from exchange during their
journey from the plume-center to our sensors, which is ap-
parent on the right-hand side of the figure. Obviously, the
linear approximation �39� cannot be expected to capture the

nonlinearity of the model curves, but except for extremely
low and high concentrations it performs reasonably well. On
the other hand, the gradient diffusion approximation is ca-
pable of capturing most features of the IECM model behav-
ior; it successfully reproduces the nonlinearity, with some
discrepancy at low and high concentrations. It is also appar-
ent that the numerical computation of the derivatives of the
PDFs in the gradient diffusion model �40� is most sensitive
to sampling errors at the concentration extremes due to lower
number of particles falling into the concentration bins there.

The cross-stream evolution of the conditioned velocity
fluctuation is shown in Fig. 6�b�. Both sensors are now at the
downstream location x /h=7.4 with increasing distance from
the wall at y /h=0.067 and 0.67. As the sensor moves to-
wards the channel centerline, the detected low-concentration
particles need weaker negative velocity to maintain those
low concentrations. The sensor locations relative to the
plume centerline can be identified by examining the cross-
stream velocity of the high concentration particles. The sen-
sors at y /h=0.067 and 0.67 are below and above the plume
centerline, respectively, since high-concentration particles at
these locations possess negative and positive cross-stream
velocities. As is expected, the linear approximation reason-
ably represents the model behavior for mid-concentrations,
while its performance degrades at locations with higher non-
Gaussianity, i.e., towards the edge of the plume. The perfor-
mance of the gradient diffusion model is reasonable, except
at the concentrations extremes.

For the IECM micromixing model, the mean dissipation
conditioned on the scalar concentration can be computed
from72

	2�
 �

�xi

�

�xi

�� f = −

2

tm


0

�

��� − ̃�f����d��, �42�

where

̃��� = ��V�f�V���dV . �43�

The function ̃��� in Eq. �43� can be obtained by taking the
average of � �V� over those particles that reside in the bin

FIG. 6. Cross-stream velocity fluctuation conditioned on the scalar concentration for the wall-release �ys /h=0.067�. Thick lines, IECM model; thin lines,
gradient diffusion approximation of Eq. �40�; straight sloping lines, linear approximation of Eq. �39�. �a� Downstream evolution at the height of the source
y /h=0.067: solid lines, x /h=4.0; dot-dashed lines, x /h=10.8 and �b� cross-stream evolution at x /h=7.4: solid lines, y /h=0.067; dot-dashed lines, y /h
=0.67.
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centered on �. The integral in Eq. �42�, however, is more
problematic. As Sawford72 notes, numerical integration er-
rors that accumulate at extreme concentrations may be am-
plified when divided by the scalar PDF approaching zero at
those locations. Since the integral over all concentrations
vanishes, i.e., �2����2 ��max�f��max�=0, for midconcen-
trations it can be evaluated either from the left ��min→�� or
from the right ��max→��. Thus the integration errors at the
concentration extremes can be significantly decreased by di-
viding the domain into two parts, integrating the left-hand
side from the left and the right-hand side from the right and
merging the two results in the division-point. Due to statis-
tical errors, however, the integral over all concentrations may
not vanish. In that case, the nonzero value


�min

�max

�� − ̃�f���d� �44�

can be distributed over the sample space by correcting the
integrand with the appropriate fraction of this error in each
bin.

The conditional mean dissipation for three different
downstream locations is depicted in Fig. 7 for both release
cases. As for the conditional velocity, the abscissas here are
also scaled between the local �min and �max. The dissipation
is normalized by the mixing time scale tm and the square of
the mean scalar peak ��peak

2 at the corresponding down-
stream locations. Note that in the case of the wall-release, the
dissipation curves are an order of magnitude lower than in

the centerline release case. This is mainly a result of the
choice of the different micromixing model constants, espe-
cially Ct.

In the case of the wall-release, the curves exhibit bimo-
dal shapes at all three downstream locations. This tendency
has also been observed by Kailasnath73 in the wake of a
cylinder and by Sawford in a double-scalar mixing layer39

and, to a lesser extent, also in homogeneous turbulence.72

Sardi et al.74 suggest that in assumed-PDF methods of turbu-
lent combustion a qualitative representation of the condi-
tional dissipation can be obtained in terms of the inverse
PDF. To examine this relationship, the corresponding scalar
PDFs are also plotted in Fig. 7 with the same scaling on the
concentration axis as the dissipation curves. It is apparent
that these results support this reciprocal connection except at
the extremes: high values of the PDF correspond to low dis-
sipation �and vice versa�. This can be observed for both re-
leases, but it is most visible in the wall-release case, where
the mid-concentration minimum between the two maxima of
the bimodal dissipation curves correspond to the peaks in the
PDFs.

The IECM model �22� implies a model for the mean
diffusion conditioned on the scalar concentration as

���2�V,�� = −
1

tm
�� − ��V�� . �45�

The downstream evolution of the conditional diffusion is de-
picted in Fig. 8 for both releases. The concentration axes are
scaled as before and the curves are normalized by the scalar

FIG. 7. IECM model predictions for the mean scalar dissipation conditioned on the concentration for �a� the centerline release �ys /h=1.0� and �b� the
wall-release �ys /h=0.067� at different downstream locations: solid line, x /h=4.0; dashed line, x /h=7.4 and dot-dashed line, x /h=10.8. The cross-stream
locations are the same as the respective source positions. Note the different scales for the dissipation curves between the different releases. Also shown are the
scalar PDFs at the same locations for both releases in �c� and �d�, respectively.
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variance ��2�, the concentration at the source, 0, and the
mean unconditioned dissipation �= �2����2�, which is
computed by integrating Eq. �42� over the whole concentra-
tion space. Also shown are the predictions according to the
IEM model, which is given by the linear relationship39

���2�����2�
�0

=
1

2
� ��

0
− �� . �46�

Far downstream as the scalar gets better mixed, the predic-
tions of the IEM and IECM models get closer. This behavior
has been observed for other statistics, as well as for other
flows such as the double-scalar mixing layer.39 Kailasnath et
al.73 report experimental data on similar shapes for the con-
ditional diffusion in the turbulent wake of a cylinder.

V. CONCLUSIONS

Several different stochastic models have been combined
to develop a complete PDF-IECM model to compute the
joint PDF of turbulent velocity, frequency and scalar concen-
tration in fully developed turbulent channel flow. The flow is
represented by a large number of Lagrangian particles and
the governing stochastic differential equations have been in-
tegrated in time in a Monte Carlo fashion. The high aniso-
tropy and inhomogeneity at the low-Reynolds-number wall-
region have been captured through the elliptic relaxation
technique, explicitly modeling the vicinity of the wall down
to the viscous sublayer by imposing only the no-slip condi-
tion. Durbin2 suggested the simple LRR-IP closure of Laun-
der et al.,7 originally developed in the Eulerian framework,
as a local model used in the elliptic relaxation equation �11�.
Since then, several more sophisticated local Reynolds stress
models have been investigated in conjunction with the ellip-
tic relaxation technique.75 In the PDF framework, the La-
grangian modified IP model of Pope47 is based on the
LRR-IP closure. We introduced an additional model constant
C
 in the definition of the characteristic length scale L �Eq.
�15�� whose curvature determines the behavior of the relax-
ation and, ultimately, the overall performance of the model in
representing the Reynolds stress anisotropy. This resulted in
a correction of the original model overprediction of the wall-
normal component �v2� far from the wall, which crucially

influences the cross-stream mixing of the transported scalar.
However, increasing the constant C
 adversely affects the
level of anisotropy that can be represented by the technique.
A more accurate treatment of the Reynolds stresses and sca-
lar mixing should be achieved by a more elaborate second
moment closure, such as the nonlinear C-L model of Craft
and Launder76 or the Lagrangian version of the SSG model
of Speziale et al.9 suggested by Pope.47

An unstructured triangular grid is used to compute Eu-
lerian scalar statistics and to track particles throughout the
domain. The main purpose of employing unstructured grids
has been to prepare the methodology for more complex flow
geometries. A similar particle-in-cell approach has been de-
veloped by Muradoglu et al.77,78 and by Zhang and
Haworth79 for the computation of turbulent reactive flows.
These approaches combine the advantages of traditional Eu-
lerian CFD codes with PDF methods in a hybrid manner. Our
aim here is to develop a method that is not a hybrid one, so
the consistency between the computed fields can be naturally
ensured. The emphasis is placed on generality, employing
numerical techniques that assume as little as possible about
the shape of the numerically computed joint PDF.

We compared the performance of the IEM and the IECM
micromixing models in an inhomogeneous flow with strong
viscous effects by modeling both the turbulent velocity field
and the scalar mixing. The more sophisticated IECM model
provides a closer agreement with experimental data in chan-
nel flow for the additional computational expense of 30%–
40% compared to the IEM model.

Several conditional statistics that often require closure
assumptions in PDF models where the velocity field is as-
sumed were extracted and compared to some of their clo-
sures. In particular, our conclusions suggest that the scalar-
conditioned velocity is well approximated by a linear
assumption for midconcentrations at locations where the ve-
locity PDF is moderately skewed. The gradient diffusion ap-
proximation, however, captures most features including the
nonlinearity and achieves a closer agreement with the IECM
model in slightly more skewed regions of the flow as well.
At local concentration extremes and in extremely skewed
regions the gradient diffusion approximation markedly de-

FIG. 8. Mean scalar diffusion conditioned on the concentration as predicted by the IECM and IEM models for �a� the centerline release �ys /h=1.0� and �b�
the wall-release �ys /h=0.067� at different downstream locations. The cross-stream locations are the same as the respective source positions. Solid line,
x /h=4.0; dashed line, x /h=7.4, and dot-dashed line, x /h=10.8. The straight lines are the linear predictions of the IEM model of Eq. �46�.
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parts from the IECM model. The mean scalar dissipation
conditioned on the scalar concentration may be well-
approximated by the inverse relationship suggested by Sardi
et al.74 in inhomogeneous flows with significant viscous ef-
fects as well, except at the concentration extremes. In com-
puting the conditional scalar diffusion, both the IEM and the
IECM models produce similar slopes due to the same scalar
dissipation rate attained.
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