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Abstract

A Lagrangian stochastic model of dispersion in the atmospheric convective boundary layer is derived. The turbulence

is assumed to be non-homogeneous and non-Gaussian in the vertical direction, homogeneous and Gaussian in the

horizontal directions. The model describes the evolution of an airborne contaminant in terms of motion of its centroid

and diffusion of particles relative to the centroid. The vertical motion of the centroid is simulated using non-stationary

Lagrangian stochastic equations incorporating a time-dependent filter for the turbulent energy. The filtering procedure

removes the contribution of turbulent eddies smaller than the cloud instantaneous size to the meandering. The

instantaneous dispersion of particles relative to the centroid is parameterized using inertial range similarity formulae.

The model is applied to the case of continuous stationary releases and the crosswind dispersion is calculated according

to Taylor’s theory. The model satisfies the well-mixed condition and is capable of calculating all moments of

concentration. Mean concentration and concentration fluctuations for several source heights are simulated and

compared with laboratory observations.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Gifford’s (1959) analytical model proved to be a

simple and effective tool for predicting concentration

moments of order higher than the mean for stationary

releases of contaminant in idealized homogeneous and

Gaussian turbulence. The effects of internal concentra-

tion fluctuations, which were not accounted for in

Gifford’s original model, were effectively incorporated

in that model by Yee and Wilson (2000) by assuming a

functional form for the probability density function

(pdf) of concentration relative to the plume centroid.

Both Gifford (1959) and Yee and Wilson (2000) assume

homogeneous turbulence and a Gaussian pdf of centroid

positions in both the transverse and vertical directions.

To progress beyond this basic representation of

the turbulence field, Luhar et al. (2000) proposed a

Lagrangian stochastic model to calculate the pdf of

plume centroid vertical position in the convective

boundary layer (cbl), where the turbulence inhomogene-

ity along the vertical direction and the skewness of the

turbulent vertical velocity determine a non-Gaussian

vertical distribution of centroid positions and, ulti-

mately, non-Gaussian concentration distributions of

contaminant downwind of the source.

The trajectories of a plume or puff-centroid in a

Lagrangian framework have been modeled in the past as

simply equivalent to the trajectories of fluid particles

(e.g., Yamada and Bunker, 1988; Weil, 1994). De Haan

and Rotach (1998), using a different approach, calculate

the centroid trajectories by first generating velocity time

series of fluid particles using a Lagrangian stochastic

model, then smoothing the calculated series using a

filtering procedure, and finally integrating the smoothed

velocities over time. Some difficulties in using the

above approaches arise because the modeled centroidE-mail address: pfranzes@gmu.edu (P. Franzese).
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trajectories span the entire boundary layer height and

hence the standard deviation of the centroid positions

does not tend to zero in the far field. This behavior is

unphysical, because the pdf of the centroid position in a

bounded flow should reduce to a delta function when a

well-mixed distribution of particles is reached. The

model by Luhar et al. (2000) overcomes the theoretical

difficulties inherent in the models mentioned above in

that it ensures the correct partitions of particle position

variance and third moment into meander and relative

diffusion components, with the meander components

vanishing in the far field. This model gives results in very

good agreement with the observations.

The model presented in this paper is based on

Gifford’s (1959) meandering plume framework and on

Luhar et al. (2000) idea of parameterizing the dispersion

of the cloud relative to the centroid and using a

Lagrangian stochastic model to calculate the pdf of

vertical meander. The model predicts mean and all

higher moments of the concentration field for contin-

uous releases in a vertically inhomogeneous and skewed

cbl flow.

The motion of the plume centroid is directly modeled

using stochastic differential equations. However, while

the motion of fluid particles is governed by the entire

spectrum of turbulent kinetic energy, the motion of a

cloud centroid is controlled only by the energy fluctua-

tions with wavelengths larger than the cloud instanta-

neous characteristic scale. A simple formulation is

presented, based on similarity theory relationships, for

the partitioning of the turbulent energy into a compo-

nent responsible for the centroid motion and a

component responsible only for the generation of in-

cloud velocity fluctuations, which are ineffective for the

large scale motion of the bulk of the plume. The

application of a time-dependent low-pass filter to the

energy spectrum ensures that only the portion of energy

governing the motion of the centroid is injected into the

model at each instant in time. The centroid acceleration

in the Lagrangian model is assumed to be a quadratic

function of the centroid velocity and is determined

according to the well-mixed condition (Thomson, 1987).

The complete model for the calculation of high-order

concentration statistics is further developed using the

assumption of homogeneous turbulence in the horizon-

tal direction and a log-normal pdf of instantaneous

concentration in a frame of reference relative to the

centroid position.

The present model has the advantage of being simple

and based on realistic assumptions. In addition, the

filtering correction to the turbulent energy is suitable for

straightforward applications to existing Lagrangian

stochastic puff models because it uses the same frame-

work of a standard one-particle model, that is, two

stochastic differential equations driven by known

turbulence statistics.

2. Basic equations for statistics of concentration

In this section, we summarize the equations defining

the statistics of concentration in the fluctuating plume

approach, where the pdf of concentration is described in

terms of pdf of instantaneous concentration relative to

the centroid location and pdf of centroid location.

By definition, the moments of concentration in a fixed

coordinate system are written as

cnðx; y; zÞ ¼
Z

N

0

cnpðc; x; y; zÞ dc; ð1Þ

where c is the instantaneous concentration, p is the

concentration pdf, x is the distance downwind of the

source, y is the transverse coordinate with respect to

the mean wind direction, z is the vertical coordinate with

origin at ground level, and the bar indicates ensemble

averaging. In the case of continuous release in stationary

flow all ensemble averages coincide with time averages at

any point in space (in the limit of infinite number of

realizations and infinite averaging time). The fluctuating

plume modeling approach is based on the following

relationship for p (Gifford, 1959):

pðc; x; y; zÞ ¼
Z Z

pcrðcjx; y; z; ym; zmÞ

� pmðx; ym; zmÞ dym dzm; ð2Þ

where pmðx; ym; zmÞ is the pdf of the location of the cloud
instantaneous centroid (ym; zm) at x; and pcr is the pdf of

concentration relative to (ym; zm), i.e. in the frame of

reference moving with the plume centroid, conditional

on the centroid location. SinceZ
N

0

cnpcrðcjx; y; z; ym; zmÞ dc ¼ cn
r ðx; y; z; ym; zmÞ; ð3Þ

where cn
r are the concentration statistics at x relative to

(ym; zm), it follows that

cnðx; y; zÞ ¼
Z Z

cn
r pmðx; ym; zmÞ dym dzm: ð4Þ

Eq. (4) states that the absolute concentration statistics

cnðx; y; zÞ can be calculated as the average of the relative

concentration statistics cn
r over the transverse and

vertical trajectory of the plume centroid (ym; zm) at x:
The plume meander along the transverse y-axis is

assumed to be statistically independent of the meander

along the vertical z-axis. Therefore, pm can be decom-

posed as

pmðx; ym; zmÞ ¼ pymðx; ymÞpzmðx; zmÞ: ð5Þ

In the following, we will develop a model to solve Eq. (4)

with assumption (5).
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3. Pdf of centroid location pmðx; ym; zmÞ

In this section, we will determine pm according

to Eq. (5) by modeling separately pzm and pym: A

Lagrangian stochastic model will be developed to

calculate pzm; and a Gaussian pdf will be used to

represent pym:

3.1. Pdf of centroid vertical location pzmðx; zmÞ

The pdf of centroid vertical location pzmðx; zmÞ is

calculated by simulating the vertical motion of the

centroid, zm; using a Lagrangian stochastic model and

then sampling the simulated zm at fixed points x:
The equations of motion of the centroid are written

directly in the form of stochastic differential equations.

The numerical solution to the equations of motion

gives a statistical simulation of the centroid trajec-

tories. Therefore, each realization corresponds to a

possible snapshot of the plume centroid, and the

ensemble average over many realizations gives

the distribution of the plume centroid along x: The
statistics of the centroid vertical velocity at fixed

points x; i.e. the Eulerian statistics, are input into the

equations of motion and need to be defined. Also,

because the centroid vertical fluctuations decay with

distance from the source, these Eulerian statistics

depend on x:

3.1.1. Partition of energy

The motion of the centroid is controlled by the

portion of the turbulent energy spectrum corresponding

to wavelengths larger than the instantaneous cross-

section scale of the plume. The residual portion of the

spectrum includes the frequencies associated with

smaller wavelengths and governs the dynamics within

the cloud volume. The small energy wavelengths are

responsible for the internal mixing and in-plume velocity

fluctuations, which do not have a role in the bodily

motion of the center of mass.

The vertical component of the turbulent kinetic

energy s2w at any point in space can be partitioned as

s2w ¼ s2wm þ s2wr; ð6Þ

where s2wm represents the fraction of energy responsible

for the oscillating motion of the centroid and s2wr is the

energy associated with the velocity fluctuations within

the bulk of the cloud.

In homogeneous isotropic turbulence the following

relationships can be written using simple similarity

scaling: s2wpðeLÞ2=3 and s2wrpðedÞ2=3; where e is the

dissipation rate of turbulent kinetic energy, L is the

integral length scale of the turbulence, and d is a

characteristic length scale of the cloud (Franzese and

Borgas, 2002). While in the cbl the variation of s2w and

s2wr along the vertical direction is significant, the

variation of the ratio of s2w to s2wr is expected to be

much smaller in that both these functions are affected in

a similar way by the vertical inhomogeneities of the heat

flux and e: Therefore, in the cbl we can write to a first

approximation s2w ¼ ðeHÞ2=3f ðzÞ and s2wr ¼ ðedÞ2=3f ðzÞ;
where H is the mixed layer depth which we assume to be

proportional to L; and f is a non-dimensional function.

Note that, because by virtue of the scaling properties of

the cbl we can write e ¼ ðw3

*
=HÞgðzÞ; where w

*
is the

convective velocity scale and g is a non-dimensional

function, the above expression for s2w can also be written

as s2w ¼ w2

*
hðzÞ; where h ¼ fg2=3; which is the form that

is commonly used to parameterize s2w in the cbl [see, e.g.,

Eq. (16)]. The simple formula below follows immediately

from Eq. (6)

s2wm ¼ s2w 1�
d

H

� �2=3
" #

: ð7Þ

Eq. (7) relates the energy of the fluctuations of the

cloud centroid s2wm to the turbulent energy s2w: Since the
size of the cloud, d; is a function of time, the term 1�
ðd=HÞ2=3 is in fact a time-dependent low-pass filter: for a
source size s05H; s2wm is approximately equal to s2w at

the source, when almost all turbulent energy contributes

to the bulk motion, and tends to zero at large distances,

as d tends to the turbulence length scale H and fewer

and fewer energy wavelengths actively feed the mean-

dering process. Conversely, the internal fluctuation

energy component s2wr is very small near the source,

but it equals the total turbulent energy in the far field,

where the vertical meander fades out as the plume

distributes uniformly along the boundary layer height

(by definition, the in-plume velocity fluctuations in a

well-mixed plume coincide with the turbulent velocity

fluctuations).

The characteristic size of the bulk of the plume, d ; is
related to the vertical component of the separation

vector between any two particles of the cloud. We

assume that the turbulence which governs the relative

diffusion process can be treated as locally homogeneous

by averaging two-point velocity statistics and energy

dissipation rate over the domain of interest (Franzese

and Borgas, 2002; Luhar et al., 2000). A simple and

robust parameterization of d is obtained using the

inertial range formulation for the two-particle relative

separation, which we write as

r2 ¼ Creðts þ tÞ3; ð8Þ

where r is the magnitude of the separation vector

between any two particles of the cloud, ts ¼ ½s20=ðCreÞ	1=3

accounts for a finite initial source size s0; and Cr is the

Richardson–Obukhov constant. Eq. (8) can be obtained

directly from the Richardson–Obukhov 4/3 law and fits

well the simulation data points reported in Franzese and
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Borgas (2002), although it is slightly inaccurate at very

short time as it does not account for the effects of the

initial separation velocity, which give r2pt2 up to

tBðs20=eÞ
1=3 (Batchelor, 1952). The constant Cr was

assumed to be 1.4 based on the values of the relative

vertical spread szr observed in the water tank experi-

ments of dispersion in the cbl by Hibberd (2000)

(reported in Fig. 3a below). The average effective size

of the plume bulk d was determined assuming that the

plume is perfectly well mixed after a non-dimensional

travel time T ¼ ðt þ tsÞw *
=H ¼ 6: Because for a well-

mixed plume swm vanishes and d ¼ H; we obtain

dEðr21Þ
1=2=6:3; where r1 is a component of the separation

vector (i.e., r21 ¼ r2=3).

3.1.2. Lagrangian model for cloud centroid trajectories

We assume that independent realizations of the

motion of a cloud centroid in the vertical direction z

can be described by the following stochastic differential

equations:

dwmðtÞ ¼ amðt;wm; zmÞ dt þ bðt; zmÞ dW ;

dzmðtÞ ¼ wmðtÞ dt; ð9Þ

where wm is the vertical velocity of the centroid, am is a

deterministic acceleration term, b is a time- and height-

dependent coefficient, and dW are the increments of a

Wiener process with zero mean and variance dt: Eqs. (9)
are based on the assumption that the joint evolution of

position and velocity of the centroid can be represented

by a Markov process, that is commonly used in one-

particle Lagrangian stochastic models (Thomson, 1987).

In our case the same assumption holds because the

motion of the centroid is still governed by turbulent

velocity fluctuations (as is the motion of a fluid particle),

although the fluctuation frequencies include only a

subset of the entire energy spectrum. The coefficient of

the random term, b; is written as b ¼ ð2s2wm=TzmÞ
1=2

where Tzm is the time-dependent Lagrangian decorrela-

tion time scale of the vertical meander. Tzm can be

defined as the ratio of centroid vertical spread to

standard deviation of the centroid vertical velocity,

and hence be written as

Tzm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � d2

s2wm

s
: ð10Þ

The drift term amðt;wm; zmÞ will be derived from the

Fokker–Planck equation associated with Eqs. (9) that

describes the evolution of PLmðt;wm; zmjt0;wm0; zm0Þ; i.e.
the Lagrangian pdf of wm at a given height zm at time t;
given the initial conditions indicated by the subscript

‘‘0’’. Because
R

PLm dt0 dwm0 dzm0 ¼ PEmðt;wmjzmÞ;
where PEm is the Eulerian pdf of wm at fixed points zm;
and where the integration is taken over the domain of

definition of the set of initial conditions ðt0;wm0; zm0Þ; the
Fokker–Planck equation for PLm integrated over t0; wm0;

and zm0 becomes

@PEm

@t
þ wm

@PEm

@zm

¼ �
@amPEm

@wm

þ
b2

2

@2PEm

@w2
m

: ð11Þ

Eq. (11) establishes a relationship between the Eulerian

statistics of wm at fixed downwind distances x and

heights zm and the centroid equations of motion (9).

Therefore, it ensures the fulfillment of the well-mixed

condition (Thomson, 1987) applied to the motion of the

centroid. We assume that the acceleration is a functional

form of the velocity as follows:

amðt;wm; zmÞ ¼ aðt; zmÞw2
m þ bðt; zmÞwm þ gðt; zmÞ; ð12Þ

where the three unknown coefficients a; b and g are

determined by multiplying Eq. (11) successively by

powers of wm; and then integrating over wm: A similar

type of quadratic form closure was used by Franzese

et al. (1999) in the context of a one-particle model in the

cbl. One obtains

a ¼
ð@tw3

m þ @zmw4
mÞ=3

w4
m � w3

m

2
=s2wm � s4wm

�
w3

mð@ts2wm þ @zmw3
m � 2s2wm=TzmÞ= 2s2wm

	 

� s2wm@zms2wm

w4
m � w3

m

2
=s2wm � s4wm

;

ð13Þ

b ¼
@ts2wm þ @zmw3

m � 2aw3
m

2s2wm

�
1

Tzm

; ð14Þ

g ¼ @zms2wm � as2wm; ð15Þ

where @ denotes differentiation with respect to its

subscript variable.

s2wm is given by Eq. (7); w3
m and w4

m are determined

according to Eq. (7) assuming that the pdf of wm has

the same skewness and kurtosis factors as the pdf

of w; that is, w3
m ¼ w3½1� ðd=HÞ2=3	3=2 and w4

m ¼
w4½1� ðd=HÞ2=3	2: The analytical expressions for the

vertical profiles of s2w and w3 are taken to be the same as

those used by Luhar et al. (2000)

s2w ¼ w2

*
a1

z

H
1� a2

z

H

� �
1�

z

H

� �h i2=3
; ð16Þ

w3 ¼ w3

*
a3

z

H
1�

z

H

� �3=2
; ð17Þ

where the coefficients a1; a2 and a3 were estimated by

least-squares fits to several sets of experimental data

reported by Franzese et al. (1999) and are equal to 1.7,

0.7 and 1.2, respectively. The kurtosis factor of the

vertical velocity distribution is taken equal to 3.5, i.e.

w4 ¼ 3:5s4w:
Because for relatively small sources the distribution of

wm at the source is approximately equal to the Eulerian

turbulent vertical velocity pdf at the source height zs;
PEðwjzsÞ; the initial velocities wm for each realization in

Eq. (9) were chosen by sampling PEðwjzsÞ as described in

P. Franzese / Atmospheric Environment 37 (2003) 1691–17011694



Luhar and Britter (1989). Each simulation consists of

20,000 realizations with an adaptive time step dt ¼
0:001Tzm: Perfect reflection at the boundaries was

assumed whenever the distance between the centroid

and one of the boundaries was smaller than the

characteristic radius of the plume bulk d=2:

3.2. Pdf of centroid transverse location pymðx; ymÞ

Because the turbulence is assumed to be homogeneous

in the horizontal directions, the transverse distribution

of centroid positions is Gaussian (Gifford, 1959; Yee

and Wilson, 2000):

pymðx; ymÞ ¼
1ffiffiffiffiffiffi
2p

p
sym

exp �
y2m
2s2ym

 !
; ð18Þ

where the centroid transverse dispersion coefficient sym

is calculated as s2ym ¼ s2y � s2yr; with the crosswind

spread s2y given by Taylor’s formula: s2y ¼ 2s2vTLvft �
TLv½1� expð�t=TLvÞ	g: The transverse Lagrangian time

scale is calculated as TLv ¼ 2s2v=ðC0eÞ; with the constant

C0 ¼ 3; the turbulence transverse velocity variance s2v ¼
0:2w2

*
and e ¼ 0:4w3

*
=H: The value of C0 was chosen to

fit the observations of sy in the laboratory experiments

of Willis and Deardorff (1976, 1978, 1981) and the LES

results of Nieuwstadt (1992); the parameterizations of sv

and e are the same as those used by Luhar et al. (2000).

The value of sv was based on the LES and laboratory

data reported by Hibberd and Sawford (1994), e was

based on LES and field data as described in Luhar et al.

(1996). The transverse relative dispersion coefficient syr

was parameterized as

s2yr ¼
Cyreðts þ tÞ3

f1þ ½Cyret2= 2s2vTLv

	 

	2=3g3=2

; ð19Þ

where Cyr ¼ Cr=6: Eq. (19) corresponds to the inertial

range relative dispersion formulation s2yr ¼ Cyreðts þ tÞ3

at small time, and tends to Taylor’s limit s2yr ¼ 2s2vTLvt

at large time. Both sym and syr are in good agreement

with the LES results of Nieuwstadt (1992) (not

reproduced here).

4. Mean concentration

In this section, we determine the mean relative

concentration %cr and calculate the mean concentration

field %c according to Eq. (4). Then, we present some

simulation results along with the corresponding labora-

tory datasets. The results include plots of crosswind-

integrated mean concentration contours, mean particle

height, vertical spread, relative vertical spread, and

centroid vertical spread. All of the simulations were run

for three source heights, for which laboratory data were

available.

4.1. Mean relative concentration %cr

The instantaneous ensemble mean concentration

relative to the cloud center of mass at a given downwind

distance x is defined as

%cr ¼ ðQ= %uÞpyrðx; y; ymÞpzrðx; z; zmÞ; ð20Þ

where Q is the amount of material released per unit time,

%u is the mean cloud advection velocity which we assume

to be constant throughout the boundary layer height,

and pyr and pzr are the transverse and vertical pdfs of

mean particle positions relative to the centroid, respec-

tively. We assume that the particle mean distribution

around the center of mass is Gaussian in both the

transverse and the vertical directions

pyrðx; y; ymÞ ¼
1ffiffiffiffiffiffi
2p

p
syr

exp �
ðy � ymÞ

2

2s2yr

" #
; ð21Þ

pzrðx; z; zmÞ ¼
1ffiffiffiffiffiffi
2p

p
*szr

XN

n¼�N

exp �
ðz � zm þ 2nHÞ2

2 *s2zr

� ��

þ exp �
z þ zm þ 2nHð Þ2

2 *s2zr

� ��
; ð22Þ

where N was taken equal to 10 and the relative vertical

dispersion coefficient *szr was parameterized as

*s2zrðtÞ ¼
Czreðts þ tÞ3

½1þ ðCzret3=0:16Þ
2=3	3=2

; ð23Þ

where Czr ¼ Cr=6: Eq. (23) is consistent with the inertial

range form (8) at small time, and accounts for the effect

of the boundaries that reduce the rate of relative vertical

spread as t increases. Because Eq. (22) includes multiple

reflections at the boundaries, the coefficient *s2zr does not

represent the effective relative vertical dispersion var-

iance s2zr; which is given by
R R

ðz � zmÞ
2pzrpzm dz dzm:

The numerical coefficient and the powers in the

denominator of Eq. (23) have been selected so that szr

and the centroid vertical spread szm fit the correspond-

ing laboratory data of Hibberd (2000) up to a time t1 of

about 6H=w
*
; where szr is only about 0.1% smaller

than its equilibrium value. At times larger than t1 a

virtually perfect uniform spread can be reached by using

a formula of the type *s2zrðtÞ ¼ *s2zrðt1Þ þ ðd *s2zr=dtÞt1 ðt � t1Þ
in Eq. (22).

Because of the Gaussian form of pzr; the distribution
of %cr does not include additional skewness in the vertical

direction beyond that caused by the reflections at the

boundaries. Therefore, z3 is not partitioned into a

meander component z3m and a relative diffusion compo-

nent ðz � zmÞ
3; and c3 is entirely due to the skewness of

pzm and to boundary reflections. This approximation

was not found to introduce a significant error in the

simulated concentration field, possibly because ðz � zmÞ
3

is relatively small in the near field, due to the small size
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of the plume, and tends to zero in the far field as the

plume tends to be well mixed.

4.2. Mean concentration results

The mean concentration field can be now calculated

according to Eq. (4), which we write in the more

convenient form below after integrating over the

centroid transverse coordinate ym:

%cðx; y; zÞ ¼
Qffiffiffiffiffiffi
2p

p
%usy

exp �
y2

2s2y

 !

�
Z H

0

pzrðx; z; zmÞpzmðx; zmÞ dzm; ð24Þ

where pzr is the analytical Gaussian distribution (22),

and pzm is calculated using our Lagrangian stochastic

model (9). To test mean concentration distribution

results, dispersion simulations were performed for three

source heights, for which data are available from the

water tank experiments of Willis and Deardorff (1976,

1978, 1981). The trajectory of the centroids was followed

until a travel time t ¼ 3H=w
*
; corresponding to a non-

dimensional downwind distance X ¼ xw
*
=ð %uHÞ ¼ 3:

Figs. 1a–c present the contour plots of the non-dimen-

sional crosswind-integrated mean concentration ob-

tained from our model for the source heights

zs ¼ 0:067H ; 0:24H and 0:49H; respectively. The

dimensions of the cells are DX ¼ 0:05 and Dðz=HÞ ¼
0:02: The corresponding contour plots obtained by

Willis and Deardorff (1976, 1978, 1981) are shown in

Figs. 1d–f.

The model results show good overall agreement with

the laboratory data and accurately reproduces the

characteristics of the mean concentration field in the

cbl. For instance, Fig. 1a ðzs ¼ 0:067HÞ shows the ascent
of the maximum concentration above zs up to a

maximum height of about 0:8H and its subsequent

slight descent; Figs. 1b and c (zs ¼ 0:24H and zs ¼
0:49H; respectively) show the initial descent of the

Fig. 1. Non-dimensional crosswind-integrated mean concentration contours predicted by the model (left) and observed in the water

tank experiments by Willis and Deardorff (1976, 1978, 1981) (right) for the source heights zs ¼ 0:067H (top), 0:24H (center) and 0:49H

(bottom).
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maximum concentration to the ground followed by an

ascent farther downwind.

The model-simulated non-dimensional mean particle

height %z=H and vertical spread sz=H are plotted in

Figs. 2a and b, respectively, along with the data reported

by Willis and Deardorff (1976, 1978, 1981). The model

compares well with the data although for the source

height at 0:24H ; at small distance ðXo1:5Þ; it over-

predicts the experimentally observed %z and sz by 10–

15%. Overpredictions of the same order are observed in

analogous simulations by one-particle stochastic models

(e.g. Franzese et al., 1999; Luhar et al., 2000) and may

depend on the selected vertical profiles of turbulence

statistics and energy dissipation rate.

Fig. 3a shows three simulations of the non-dimen-

sional relative vertical spread szr=H for zs ¼ 0:10H;
0:25H and 0:42H; respectively, where szr was

calculated at each x as the square root of s2zr ¼
R R

ðz �
zmÞ

2pzrpzm dz dzm: The saline water tank data of Hibberd
(2000) are also shown. The model szr is in good

agreement with the data, although it shows a depen-

dence on the source height weaker than the observa-

tions. This is possibly due to the simple parameterization

(23) for *szr; which is independent of z:

Fig. 3b shows the non-dimensional vertical spread of

the plume centroid szm=H; where szm was calculated as

ðs2z � s2zrÞ
1=2; along with the data of Hibberd (2000). The

model predicts larger peak values for higher sources in

agreement with the observed pattern, although it slightly

overpredicts the maxima. The model curves fit the data

with a minimal error at all X > 1:

5. Concentration fluctuations and higher order statistics

of concentration

In this section, we determine the expression for

the moments of c: We parameterize pcr using an

analytical pdf and give the formula for the moments

of relative concentration cn
r ; which are necessary to

calculate cn according to Eq. (4). We perform a

simulation of the concentration fluctuation intensity

field ic ¼ sc=%c; where sc is the standard deviation of

concentration, and compare the crosswind averages of ic
over inner and outer regions of the plume at several

downwind distances with the corresponding laboratory

observations.

0 1 2 3
X

0

0.1

0.2

0.3

0.4

σ z
/H

W & D data (zs = 0.067  H)

W & D data (zs = 0.24  H)

W & D data (zs = 0.49  H)

Model (zs = 0.067 H)

Model (zs = 0.24 H)

Model (zs = 0.49 H)

0

0.2

0.4

0.6

0.8

z
/H

(b)

(a)

Fig. 2. Non-dimensional mean particle height (a) and vertical

spread (b) predicted by the model, along with the data from the

water tank experiments of Willis and Deardorff (1976, 1978,

1981, referred to in the figure as W & D) for the source heights

zs ¼ 0:067H; 0:24H and 0:49H:
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= 0.10 H)

Hibberd data (z
s 
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Fig. 3. Non-dimensional relative vertical spread szr=H (a) and

centroid vertical spread szm=H (b), along with the water tank

data of Hibberd (2000) for the source heights zs ¼ 0:10H;
0:25H and 0:42H:
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5.1. Pdf of relative concentration pcr and moments of

concentration

The pdf of relative concentration pcr; which represents
the instantaneous distribution of material around the

plume centroid, is parameterized using a log-normal pdf.

Csanady (1973) obtained a log-normal distribution of

relative concentration as the result of a model that

described the mixing process within a contaminant

cloud. According to Csanady’s (1973) model, each

parcel of the cloud is assumed to change its concentra-

tion through a succession of diluting impulses: in each

impulse the parcel is mixed with a random portion of

uncontaminated fluid. It is possible to choose other

forms for this distribution, for example Hanna (1984)

used an exponential pdf, and Yee and Wilson (2000) and

Luhar et al. (2000) used a gamma pdf which proved to

describe the internal structure of a plume with good

accuracy. After testing our model using a gamma pdf as

pcr; we did not find any significant discrepancy with the

results obtained using the algebraically simpler log-

normal pdf, which was therefore selected. The log-

normal distribution is written as

pcrðcjx; y; z; ym; zmÞ ¼
1ffiffiffiffiffiffi
2p

p
sc
exp �

ðln c � mÞ2

2s2

� �
; ð25Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ i2crÞ

p
; and m ¼ lnð%cr=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i2cr

p
Þ; icr ¼

scr=%cr denotes the intensity of relative concentration

fluctuations, where scr is the standard deviation of

relative concentration. The moments of cr calculated

using Eq. (25) assume the simple form below

cn
r ¼ %c

n
r ð1þ i2crÞ

nðn�1Þ=2: ð26Þ

To date there are no available observations of icr in the

cbl. Luhar et al. (2000) set an iterative procedure to

determine the values of icr that produce the best fit of

their simulated intensity of absolute concentration ic ¼
sc=%c to laboratory data. We parameterized icr by least-

squares fitting the curve reported in Luhar et al. (2000)

as follows:

icr ¼ b1X
3 expð�X 2=3=b2Þ; ð27Þ

where b1 ¼ 60 and b2 ¼ 0:27:
All moments of cðx; y; zÞ can be now calculated

according to Eq. (4), which can be written in the

following form after integrating over ym:

cnðx; y; zÞ ¼
Q

%u

ð1þ i2crÞ
n�1

2ps2yr

" #n=2
s2yr

ns2ym þ s2yr

 !1=2

� exp �
ny2

2ðns2ym þ s2yrÞ

" #

�
Z H

0

pn
zrðx; z; zmÞpzmðx; zmÞ dzm: ð28Þ

Obviously, for n ¼ 1 this equation coincides with

Eq. (24) for %c:

5.2. Concentration fluctuations results

Deardorff and Willis (1984) report water tank

observations of near-surface concentration fluctuation

intensity ic ¼ sc= %c: The experiments were conducted for

a source size s0 ¼ 0:003H at a height of 0:13H: Because
the laboratory plume had a non-zero initial momentum,

a virtual source height zs ¼ 0:22H was assumed in our

simulations, as estimated by Luhar et al. (2000).

Contours of the calculated ic at the plume centerplane

y ¼ 0 are shown in Fig. 4 for the above input conditions.

The vertical profiles of ic in Fig. 4 consistently show

larger values at the boundaries than within the boundary

layer, with the lowest values located near the plume

centroid. At distances X larger than about 6; the vertical
variations of ic are not appreciable. An interesting

feature of the computed field in Fig. 4 is the occurrence

of a ground-level local minimum of icE1:4 at XE0:4;
and of a local maximum of about 2 at XE1:2: These
points are the result of a balance between two effects. On

the one hand, the intensity of fluctuations along the

plume mean trajectory decays with X after an initial

stage of growth because the vertical spread is con-

strained by the boundaries; on the other hand, at a fixed

X ; ic always increases with distance from the centroid.

Therefore, the ascent of the plume at 0:5oXo1:5 causes
the ground level ic in that region to increase with X at a

rate higher than the decay rate, thus forming a local

maximum.

The existence of the predicted local maximum and

minimum is supported by Deardorff and Willis’ (1984)

experimental data. Fig. 5 presents the observed and

predicted ic as a function of X at a height z ¼ 0:08H :
Only the data from the experiments with non-buoyant

emissions are considered here. The observed values of ic

0 1 2 3
X

0

0.5

1

z/
H

Fig. 4. Contours of the concentration fluctuation intensity ic
along the plume centerplane y ¼ 0 predicted by the model for a

source with size s0 ¼ 0:003H at a height zs ¼ 0:22H:
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averaged over jyjosy=2 are represented by open

triangles, those averaged over sy=2ojyjosy by open

circles. The lines correspond to the predicted ic averaged

over its values at jyj ¼ 0; sy=4 and sy=2 (solid line), and

over jyj ¼ sy=2; 3sy=4 and sy (dashed line). The model

results are in good agreement with the observations,

including the prediction of a peak followed by a

monotonic decay with distance in both the inner and

the outer region. Deardorff and Willis (1984) caution

about the validity of the high values observed at XE1:4;
arguing that these data might be anomalous due to the

low number of realizations which were used to form the

ensemble means. In fact, the existence of a peak of ic has

been confirmed by our model results in Fig. 5, and has

been simply explained by analyzing the fluctuation

intensity contours in Fig. 4.

Additional detail is provided by the near-surface

(z ¼ 0:08H) fluctuation intensity field, which is depicted

in Fig. 6a. This figure shows that a local minimum and

maximum of ic are formed downwind of the source only

at jyjoH=4 approximately. At transverse distances

beyond jyjEH=4; ic simply decreases with X for all

X > 0: The corresponding near-surface non-dimensional
mean concentration field %c %uH2=Q at z ¼ 0:08H is

presented in Fig. 6b. The maximum concentration

occurs at XE0:3 and has a magnitude of about 10:
Note that while the minimum near-surface ic at XE0:5
(Fig. 6a) occurs near the location of maximum %c

(Fig. 6b), it is not possible to predict the existence

of the near-surface local maximum ic at XE1:2
simply on the basis of the mean concentration field in

Fig. 6b.

6. Conclusions

The present form of the model has been derived

prioritizing simplicity and robustness. For instance,

basic parameterizations of two-particle relative disper-

sion and particle mean vertical distribution around the

centroid have been used [Eqs. (8) and (22), respectively],

and a log-normal pdf has been preferred to the more

complex gamma pdf to represent the relative concentra-

tion distribution [Eq. (25)]. In some cases it is possible to

use more detailed parameterizations, but the overall

good accordance of the model results with observations

suggests that the present formulation already ensures the

level of accuracy required in most applications.

The Lagrangian model responds to the need of well-

founded particle models where mass kernels are

associated to the released particles. In such a representa-

tion, the dynamics of mass centroids cannot be equated

with the dynamics of single particles because they

correspond to different physical processes. The pro-

posed filtering technique is simple and can be separately

incorporated in other existing Lagrangian formulations

of one-particle models for mean concentration fields

with relatively small effort.

Fig. 5. Concentration fluctuation intensity ic as a function of

the non-dimensional distance X at a height z ¼ 0:08H for a

source with size s0 ¼ 0:003H at a height zs ¼ 0:22H: The

observations from the water tank experiments by Deardorff

and Willis (1984, referred to in the figure as D & W) averaged

over jyjosy=2 are represented by open triangles, over

sy=2ojyjosy by open circles. The corresponding predicted ic
are represented by the solid and the dashed line, respectively.

Fig. 6. Contours of concentration fluctuation intensity ic (a)

and of non-dimensional mean concentration %c %uH2=Q (b) at

z ¼ 0:08H predicted by the model for a source with size s0 ¼
0:003H at a height zs ¼ 0:22H:
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The centroid acceleration has been approximated by a

quadratic function of the centroid velocity and has been

determined in terms of filtered turbulent velocity

statistics. This type of functional form closure was used

to determine particle accelerations in the context of one-

particle models, where it proved to produce accurate

mean concentration fields with a good computational

efficiency due to its simplicity (e.g., Franzese et al., 1999;
.Ottl et al., 2001). This approach avoids the need to

assume an analytical form for the pdf of the turbulent

velocity and allows directly the use of the observed

turbulence velocity statistics up to the fourth order.

Moreover, it does not require preliminary generation of

Lagrangian one-particle dispersion statistics. Because

the plume size increases with time, the filtered centroid

velocity statistics are functions of time, hence the

acceleration is time-dependent and the equations of

motion for the centroid are non-stationary. This is a

natural mathematical framework to describe the cen-

troid damped oscillations, which fade out as the

contaminant cloud distributes uniformly along the

vertical direction.

The agreement between the dispersion results ob-

tained from the new model and the available laboratory

data is very good. Furthermore, the simulations

clearly show a non-monotonic decay of the near-

surface intensity of concentration fluctuations. We

elucidated the mechanisms responsible for the occur-

rence of a local minimum and maximum intensity of

fluctuation, and showed how this phenomenon is

consistent with the mean concentration patterns.

This peculiar behavior is in accordance with the

laboratory experiments of Deardorff and Willis (1984),

where the observations of a local maximum could not be

explained were attributed to a possible statistical

uncertainty.

The model for the calculation of second and higher

order concentration statistics uses the intensity of

relative concentration fluctuations icr as input. The

parameterization of icr was based on the data that

Luhar et al. (2000) determined using an iterative

procedure. Although the good agreements of both

Luhar et al. (2000) and the present model results with

observations suggest that the parameterized icr is

realistic, it is hoped that experimental estimations of

this quantity could substantiate, if not improve, its

current definition.
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