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Abstract

We consider the one-dimensional case of vertical dispersion in the convective boundary layer (CBL) assuming that the
turbulence field is stationary and horizontally homogeneous. The dispersion process is simulated by following Lagran-
gian trajectories of many independent tracer particles in the turbulent flow field, leading to a prediction of the mean
concentration. The particle acceleration is determined using a stochastic differential equation, assuming that the joint
evolution of the particle velocity and position is a Markov process. The equation consists of a deterministic term and
a random term. While the formulation is standard, attention has been focused in recent years on various ways of
calculating the deterministic term using the well-mixed condition incorporating the Fokker—Planck equation. Here we
propose a simple parameterisation for the deterministic acceleration term by approximating it as a quadratic function of
velocity. Such a function is shown to represent well the acceleration under moderate velocity skewness conditions
observed in the CBL. The coefficients in the quadratic form are determined in terms of given turbulence statistics by
directly integrating the Fokker—Planck equation. An advantage of this approach is that, unlike in existing Lagrangian
stochastic models for the CBL, the use of the turbulence statistics up to the fourth order can be made without assuming
any predefined form for the probability distribution function (PDF) of the velocity. The main strength of the model,
however, lies in its simplicity and computational efficiency. The dispersion results obtained from the new model are
compared with existing laboratory data as well as with those obtained from a more complex Lagrangian model in which
the deterministic acceleration term is based on a bi-Gaussian velocity PDF. The comparison shows that the new model
performs well. ( 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Air quality modelling; Atmospheric dispersion; Particle models; Convective boundary layer; Skewed distri-
bution

1. Introduction

In a completely developed turbulent flow, such as the
convective boundary layer (CBL), the joint evolution of
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velocity and position of an individual fluid particle can
be reasonably regarded as a Markovian stochastic pro-
cess (Monin and Yaglom, 1975). Experimental observa-
tions indicate that the vertical turbulence in the CBL is
highly inhomogeneous and skewed whereas the horizon-
tal turbulence can be considered to be Gaussian (Willis
and Deardorff, 1976, 1978, 1981).

Here we consider the one-dimensional case of vertical
dispersion in the CBL assuming that the turbulent field is

1352-2310/99/$ - see front matter ( 1999 Elsevier Science Ltd. All rights reserved.
PII: S 1 3 5 2 - 2 3 1 0 ( 9 8 ) 0 0 4 3 2 - 4



stationary and horizontally homogeneous. Under these
conditions, the motion of independent fluid particles in
the vertical direction (z) can be represented by the follow-
ing stochastic differential equations (Thomson, 1987):

dw(t)"

dz (t)"

a(w, z) dt#[C
o
e(z)]1@2d¼,

w(t) dt ,
(1)

where w is the vertical velocity of a particle, C
o

is a
universal constant, e(z) is the ensemble-average rate of
dissipation of turbulent kinetic energy, and d¼ are the
increments of a Wiener process with zero mean and
variance dt. The deterministic acceleration term a (w, z)
is a function of turbulence statistics and is derived from
the following Fokker—Planck equation incorporating the
well-mixed condition (Thomson, 1987):
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where P
E
(w, z) is the (Eulerian) probability density func-

tion (PDF) of the vertical turbulent velocity (w) at a given
height z.

Eq. (2) provides a relationship between the function
a(w, z) and the Eulerian statistical characteristics of the
flow field, the latter represented by the probability distri-
bution P

E
. A natural and rigorous approach to the prob-

lem of determining a(w, z) , common to most Lagrangian
stochastic dispersion models, consists of solving Eq. (2)
by assuming an analytical expression for P

E
that satisfies

moment constraints and is in agreement with available
data. For instance, the representation of P

E
by a weighted

sum of two Gaussian distributions has been used for
several models (e.g., Baerentsen and Berkowicz, 1984;
Luhar and Britter, 1989):

P
E
(w, z)"A(z)P

A
(w, z)#B(z)P

B
(w, z), (3)

where P
A

and P
B
are the velocity Gaussian PDFs around

the mean positive velocity and the mean negative veloc-
ity, respectively, and the weights A(z) and B(z) can be
associated to the probabilities of occurrence of positive
and negative turbulent velocities. The PDF represented
by Eq. (3) contains six unknown parameters, and the
system of six equations required to determine them can
be written in a closed form if the first five Eulerian
moments of the velocity are known. However, this ap-
proach, although theoretically viable, presents some
practical limitations, mainly because it does not provide
an analytical solution (e.g. Tassone et al., 1994), but also
because of the difficulties in obtaining accurate estimates
of the higher order moments. Therefore, several closures
have been proposed in the literature to obtain analytical
solutions for the PDF parameters and to avoid the use of
higher order moments (e.g. Weil, 1990; Luhar et al., 1996).

Generally, the models derived by the bi-Gaussian ap-
proximation (3) provide results that are in very good
agreement with experiment, and also the physical charac-
terization of the terms in (3) leads to well-founded closure
assumptions, directly and quite simply linked to the
physics of the process.

A different approach leads to the model we propose in
this paper. We do not make any assumption about the
form of the PDF, but only require the first four Eulerian
moments of the velocity to provide information on the
statistical properties of the turbulence. This is done by
assuming that a (w, z) is a quadratic function of the velo-
city, and then deriving the function coefficients using the
Fokker—Planck Eq. (2). This representation has the ad-
vantage of a much better computational efficiency due to
its algebraic simplicity. However, for highly skewed
PDFs, this approach leads to some errors in the concen-
tration distribution at large times, although the near-
source dispersion remains correct.

The same expression for the acceleration can be ob-
tained by expanding the acceleration as a power series
in the velocity, and then truncating the series at second
order. Kaplan and Dinar (1993) gave the general expres-
sion for the power series, and determine the series co-
efficients using the moments of the Eulerian PDF. Du
et al. (1994) tested the power series expression for the ac-
celeration truncated at orders as high as 4 in the one-
dimensional case for homogeneous and inhomogeneous
non-Gaussian turbulence, and discussed the effects of the
approximations on the deviations from the well-mixed
profile.

2. The model

We assume that the acceleration is a function of the
velocity as follows:

a(w, z)"a (z)w2#b (z)w#c(z), (4)

where the three unknown parameters a (z) , b(z) and c(z)
are determined from the Fokker—Planck Eq. (2), as dis-
cussed below. The conjecture that a quadratic functional
form for the acceleration could suitably represent the
main mechanisms of Lagrangian turbulent dispersion
relies on the consideration that such a form is the exact
result for the case of Gaussian turbulence (Thomson,
1987); it is therefore natural to assume that the flexibility
of this polynomial form could well adapt to conditions
other than Gaussianity. Of course, we also expect that if
the statistical characteristics of the flow field deviate
strongly from Gaussianity, the acceleration (4) may not
provide the correct description of the flow.

The system of equations that determines the para-
meters of the acceleration in Eq. (4) can be obtained by
multiplying Eq. (2) successively by powers of w, and then
integrating over the velocity. The system involves the
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functions a (z), b(z) and c(z), the Eulerian moments of
w and their derivatives with respect to z:
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Since the turbulence is not homogeneous in the verti-

cal direction, the Eulerian moments wn and their corre-
sponding derivatives depend on the position z.

Eq. (5), evaluated for n"1, 2 and 3, provides the
expressions for the coefficients in Eq. (4):
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c(z)"
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Therefore, the acceleration is completely defined if the
first four Eulerian moments of the velocity are known.
The model allows for an independent choice for the
analytical expression of the moments, eliminating the
relation between kurtosis and skewness implied by sev-

Fig. 1. Profiles of the second (w2/w2
*
) and (w3/w3

*
) third moments

of the vertical velocity. Experimental data of (£) Lenschow et al.
(1980); (L) Luhar et al. (1996); (e) Willis, from Baerentsen and
Berkowicz (1984); (K) Willis and Deardorff (1974); (n) Young
(1988). The solid lines are the profiles represented by Eqs. (7).

eral closure assumptions for models with a bi-Gaussian
PDF (e.g. Tassone et al., 1994; Luhar et al., 1996). Fur-
thermore, Eqs. (6) show that the model reduces to the
standard Gaussian form (as given in Thomson, 1987)
when skewness and kurtosis tend to their Gaussian
values, i.e., 0 and 3, respectively.

3. Model application

In this paper, we use the following analytical expres-
sions for the second and third moments of the vertical

velocity in the CBL:

w2

w2
*
"a

1
#a

2A
z

z
i
B
2@3

A1!
z

z
i
B
4@3

, (7a)

w3

w3
*
"a

3 A
z

z
i
BA1!

z

z
i
B
2
, (7b)

where w
*

is the convective velocity, z
i

the mixed
layer depth, and the coefficients a

1
, a

2
and a

3
are equal

to 0.05, 1.7 and 1.1, respectively. These profiles are based
on the experimental data shown in Fig. 1. There is a
considerable scatter in the data and it is possible to
choose other values for the coefficients, as discussed
later.

As used by Luhar et al. (1996), we take the value of the

kurtosis (K) to be equal to 3.5 [i.e., w4"3.5(w2)2] and
e"0.4w3

*
/z

i
. The kurtosis value was based on the results

from experiments using a saline water tank described by
Hibberd and Sawford (1994) whereas the value of e was
based on some large eddy simulation results and field
data (Luhar and Britter, 1989; Weil, 1990).

The exact value of the universal constant C
o
is uncer-

tain with various estimates obtained by different ap-
proaches ranging between 2 and 7. However, there seems
to be a consensus for using a value close to 2 for models
of dispersion in convective conditions (see e.g. Rotach et
al., 1996 and references therein). Accordingly, we assume
C

o
"2 in the present study.
The acceleration a (w, z) given in Eq. (4) as a function of

velocity, is plotted in Fig. 2 for three different heights z/z
i
.

Although the shape of this function is highly sensitive to
the profiles of the velocity moments employed, the accel-
eration provided by both the present model and the
Luhar—Britter (LB) model has the same qualitative be-
haviour for the range of velocity with highest probability,
i.e. Dw/w

*
D)1.
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Fig. 2. Dimensionless acceleration z
i
/w2

*
as a function of velocity

at 3 heights in the CBL. LB is the Luhar—Britter model.

The dispersion simulations were performed for three
source heights, for which data are available from a series
of experiments of Willis and Deardorff (1976, 1978, 1981).
The distribution of the initial velocity of the particles was
taken equal to the Eulerian velocity distribution at that
height; therefore, assuming the bi-Gaussian distribution
(3) to be a good approximation of the Eulerian field, the
initial velocities were chosen by sampling this PDF re-
presented by expression (3) as described in Luhar and
Britter (1989). For each simulation a total of 2]104

particles were released and followed until a non-dimen-
sional travel time ¹"tw

*
/z

i
"6 with a time step *t"

0.01q (z), where

q(z)"
2w2

C
o
e(z)

(8)

is the Lagrangian time scale. The particles were perfectly
reflected at the boundaries; this is appropriate because of
zero skewness there. The LB model with the new closure
assumption described in Luhar et al. (1996) was also run
for the same conditions to compare with our new model
results.

3.1. Dispersion results

By applying Ito’s formula to Eq. (1), the theoretical
behaviour of the mean and variance of particle heights
near the source can be determined by the relations (Hunt,
1985; Thomson, 1987):
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Fig. 3. Dimensionless mean particle height and spread (stan-
dard deviation) at small values of ¹ for the source height
z
4
/z

i
"0.24. Comparison of new model with exact result given

by Eqs. (9).

where z
4
is the source height. These relations are indepen-

dent of the approximations used to determine the accel-
eration term, and only assume the validity of Eqs. (1).
Therefore, a first test of consistency for our model is the
comparison between the results of simulations near the
source with the expressions (9). Fig. 3 shows the excellent
agreement at small ¹ for both the dimensionless mean

particle height zN /z
i
and particle spread [(z!z

4
)2]1@2/z

i
for

the source height z
4
/z

i
"0.24.

The non-dimensional mean particle height and spread
obtained using the new model are plotted in Fig. 4a—c
and Fig. 5a—c, respectively, for the source heights
z/z

i
"0.067, 0.24 and 0.49. Also shown are the results

obtained by the LB model, along with the data from the
water tank experiments of Willis and Deardorff (1976,
1978, 1981). The models show good agreement with each
other and compare well with the laboratory data. How-
ever, more significant is the fact that the computational
time for the present model was only a quarter that for the
LB model because of the much simpler form of the
acceleration term.

Fig. 6a—c presents the contour plots of the non-dimen-

sional crosswind-integrated concentration (Cy) obtained
from our model for the three source heights. The contour
plots obtained by Willis and Deardorff (1976, 1978, 1981)
in their tank experiments are shown in Fig. 6d—f (as
replotted by Hurley and Physick, 1993) and the simula-
tions by the LB model in Fig. 6g—i. The dimensions of the
cells are the same for both models, i.e. *¹"0.1,
*z/z

i
"0.05. The dynamics of the dispersion is satisfac-

torily represented by both models including the existence
of regions with counter-gradient flux (Sawford and
Guest, 1987).

The ground-level concentrations shown in Fig. 7a—c
indicate that the new model agrees well with the LB
model but underestimates the experimentally observed
peaks by 10—15% for the source heights at 0.24z

i
and

0.49z
i
.
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Fig. 4. Dimensionless mean particle height for source height
(z

4
/z

i
): (a) 0.067, (b) 0.24 and (c) 0.49. New model compared with

Luhar-Britter model and data of Willis and Deardorff (1976,
1978, 1981).

3.2. Limitation on skewness in the model

During tests with various fits to the experimental data
in Fig. 1, it was found that the new model did not give
a well-mixed concentration distribution at large times if
the value of skewness was large. With increasing skew-
ness, the near-source characteristics of the concentration
field do not change, but the ‘‘well-mixed’’ concentration
in the regions close to the boundaries is found to fall
below the value in the middle of the CBL. Because the
turbulence is inhomogeneous, one cannot find an exact
relationship between the parameterisation of the skew-
ness and the error affecting the asymptotic concentration
profile. However, as a simple criterion for estimating the

Fig. 5. Dimensionless mean particle spread for source height
(z

4
/z

i
): (a) 0.067, (b) 0.24 and (c) 0.49. New model compared with

Luhar-Britter model and data of Willis and Deardorff (1976,
1978, 1981).

accuracy of the computations we evaluated the average
over the boundary layer height of the root mean squares

of the error from the well-mixed concentration (Cy), at
a non-dimensional time ¹ equal to 6, as a function of the
maximum skewness of the parameterised moments. The
results are shown in Fig. 8. The skewness provided by
the relations (7) with coefficients a

1
"0.05, a

2
"1.7 and

a
3
"1.1 defined at the start of Section 3 does not exceed

a value 0.43; thus the errors in the well-mixed profile are
negligible for the model results shown so far. For higher
values of the skewness the concentration distribution
becomes more unmixed in the regions close to the bound-
aries. This indicates that the polynomial form for the
acceleration (4) is not suitable for such skewness values.
Nevertheless, it should be noted that skewness values in
the range 0.4—0.6 provide a good fit to observed data in
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Fig. 6. Contours of the dimensionless crosswind-integrated concentration predicted by the new model (left), measured by Willis and
Deardorff (1976, 1978, 1981) (center) and predicted by the Luhar—Britter model (right) for the source height (z

4
/z

i
)"0.067 (top),

(z
4
/z

i
)"0.24 (center) and (z

4
/z

i
)"0.49 (bottom).

the CBL with only minor errors in the ‘‘well mixed’’
region.

3.3. Comparisons of PDFs

The results in Figs. 4—7 for the average plume height,
dispersion and crosswind-integrated concentration field,
indicate that the particles are well mixed after ¹+6.
Therefore, the numerical approximation to the Eulerian
PDF for the vertical velocity can be computed by samp-
ling the particle velocity field at various heights at this
time. Fig. 9a—f compare our new model PDFs obtained
at six levels in the CBL with the laboratory PDFs of
Luhar et al. (1996) and those obtained by the LB model.
Both models underestimate the mode of the PDF, essen-
tially because of the choice for the second moment (solid

line in Fig. 1), which is higher than the laboratory
measurements across the middle region of the boundary
layer. We tested the ability of the model to match the
experimental PDFs with a different choice of the co-
efficients in Eqs. (7) for the moments: we assigned to the
coefficients a

1
, a

2
and a

3
the values 0.05, 1.4 and 1.5,

respectively, in order to have a closer fit to the laboratory
moment data (open circles in Fig. 1). These coefficients
(referred to as the second set) lead to a maximum

variance (w2) of 0.44, and to a maximum skewness (S)
of 0.75. Although this value of skewness produces prob-
lems in the ‘‘well mixed’’ concentration fields, the
dot—dash line in Fig. 9a—f shows that with the second
set of coefficients, the model is in better agreement with
the experimental data as far as the PDF modes are
concerned.
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Fig. 7. Dimensionless crosswind-integrated ground level con-
centrations for source height (z

4
/z

i
): (a) 0.067, (b) 0.24 and (c)

0.49. Circles—laboratory results of Willis and Deardorff (1976,
1978, 1981).

3.4 Kolmogorov—Smirnov test

In order to evaluate the accuracy of the numerical
computation of the PDF we applied the Kolmogorov—
Smirnov (K—S) test (see e.g. Wilks, 1995) to the data sets.
The test consists of comparing the data of two cumulat-
ive distribution functions against one another, under the
null hypothesis that they were drawn from the same
distribution: after calculating the K—S statistic, defined as
the maximum value of the absolute difference between
two cumulative distribution functions, we calculated the
significance level of the statistic, under the hypothesis

Fig. 8. Vertical average of the root mean squares of the error
from the well- mixed concentration (at ¹"6) as a function of
the maximum skewness of the moment profiles.

that the compared data sets are drawn from the same
distribution. A large percentage significance level means
that the null hypothesis is quite likely to be true, i.e.
the two compared cumulative distributions are not sig-
nificantly different from each other. Fig. 10 shows the
significance levels for the various pairs of data sets com-
pared. The PDFs calculated by the new model and the
LB model compare reasonably well with the experi-
mental data. The agreement of the new model with the
data is better in the central part of the boundary layer
than near the boundaries. Using the second set of coeffi-
cients (with S"0.75) produces worse agreement between
the model PDFs and the laboratory PDFs, which is
related to the problems in the concentration field caused
by the higher skewness.

4. Conclusions

We have considered the one-dimensional case of verti-
cal dispersion in the convective boundary layer assuming
that the turbulence field is stationary and horizontally
homogeneous, and that the evolution of the particle
velocity and position is a Markov process, governed by
a stochastic differential equation. We propose a simple
parameterisation for the deterministic acceleration term
by approximating it as a quadratic function of velocity.
Such a function is shown to represent well the acceler-
ation under moderate velocity skewness conditions ob-
served in the CBL. The coefficients in the quadratic form
are assumed to be height dependent and are determined
in terms of given turbulence statistics by directly integrat-
ing the Fokker—Planck equation.

An advantage of this approach is that, unlike in exist-
ing Lagrangian stochastic models for the CBL, the use of
the turbulence statistics up to the fourth order can be
made without assuming any predefined form for the
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Fig. 9. Dimensionless vertical velocity probability density functions at heights (z/z
i
) (a) 0.19, (b) 0.31, (c) 0.44, (d) 0.56, (e) 0.69 and (f ) 0.81.

Solid circles—water tank data (Luhar et al., 1996), solid line—new model results; dotted line—Luhar—Britter model results; dot—dash
line—new model results for skewness S"0.75 (second set of coefficients in Eqs. (7)).

probability distribution function of the velocity. The
main strength of the model, however, lies in its simplicity
and computational efficiency.

The dispersion results obtained from the new model
were compared with existing laboratory data as well as
with those obtained from a more complex Lagrangian
model based on a bi-Gaussian velocity PDF. The com-
parison demonstrates that the new model performs well.

Acknowledgements

It is a pleasure to thank Mark Hibberd for his care-
ful reading of the manuscript, and for his many and
important suggestions during the preparation of this
paper.

2344 P. Franzese et al. / Atmospheric Environment 33 (1999) 2337—2345



Fig. 10. Significance levels for the Kolmogorov—Smirnov statis-
tics.
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