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ABSTRACT

The relative dispersion process for clouds of contaminant in generic atmospheric flow is considered. The
properties of the separation distance for pairs of particles are simplified by implicitly averaging over the spatial
domain of the dispersing cloud. Representative statistics and simplified sets of measurements for characterizing
two-particle dispersion in complex flows are identified. A Lagrangian stochastic model of relative dispersion
equivalent to processes in homogeneous and isotropic turbulence at high Reynolds numbers is derived. The
model uses a new formulation for parameterizing the acceleration of separation, satisfies the criterion of con-
serving a well-mixed distribution of particle separations, and accounts explicitly for non-Gaussian statistics of
the turbulence velocity differences. The results are in very good agreement with similarity theory in the inertial
range and are consistent with uncorrelated velocities at length scales larger than the turbulence integral scale.
The model is applied to the estimation of fluctuating concentration fields, which is relevant for representing the
relative dispersion part of popular meandering plume and puff approaches. The dependence of mean-square
concentration and concentration fluctuations on the source size is eliminated via a new scaling law for the time,
which in fact determines a universal behavior for the concentration field. Simple formulas are derived that are
consistent with previous theories, and they are successfully tested against numerical simulations.

1. Introduction

Clouds of noxious chemicals are significant environ-
mental hazards, and their behavior needs to be predicted
for many public safety purposes. Such contaminant
clouds are characterized by many factors, foremost be-
ing the highly variable fluctuating concentrations related
to the highly variable shape and distribution of the
cloud. Numerous models have been formulated, using
a variety of approaches, to respond to the growing need
for accurate estimates of the concentration fluctuations
[see, e.g., Hanna (1984) for a review of concentration
fluctuation models for continuous plumes and Lewis and
Chatwin (1997), Thomson (1996), and Brown and Saw-
ford (2000) for detailed models]. Such clouds or plumes
are also commonly described by the relative dispersion
properties, which control the instantaneous size of the
cloud as opposed to its translation by the mean wind
(Luhar et al. 2000).

To predict the mean-square concentration and relative
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dispersion, statistical modeling of the simultaneous tra-
jectories of two particles is required [see, e.g., the recent
review by Sawford (2001)]. The statistical approach for
the description of concentration fluctuations parallels
the evolution of the stochastic Lagrangian theory for
the prediction of mean concentration fields.

A complete description of the trajectories of pairs of
particles must include the formulation of the equations
for positions in terms of either the six Cartesian coor-
dinates of the two particles (Thomson 1990) or the three
Cartesian coordinates of the pair center of mass plus the
three components of the separation vector between the
two particles. These formulations have six spatial co-
ordinates and a corresponding number of velocity var-
iables, so the mathematical description of the system is
formidable. A simpler description just considers the
magnitude of the separation vector, the so-called scalar
separation, independent of the other variables.

The first model for scalar separation was proposed
by Durbin (1982), who derived it from his original three-
dimensional model (Durbin 1980). However, Thomson’s
(1990) analysis has shown that Durbin’s model does not
satisfy the well-mixed condition. Durbin’s model also
does not give inertial-range scaling for small-time La-
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grangian velocity increments (Borgas and Sawford
1991). Kurbanmuradov and Sabelfeld (1995) more re-
cently gave an example of a scalar separation model
that satisfies the well-mixed condition. However, be-
cause this model cannot be formulated in a closed form
(i.e., the acceleration and the coefficient of the random
term can only be obtained numerically), it is impractical
for some applications and its computational efficiency
is poor. In addition, the tails of the Eulerian probability
density function (pdf ) of the velocity differences fall
off as a Gaussian distribution and do not reflect inertial-
range behavior (Anselmet et al. 1984). The recent model
of Reynolds (1999) is also an interesting preliminary
model of relative dispersion, but it is not suited well as
an applied model, nor does it formally indicate how
averages of orientation of the separation vector lead to
simple applications of scalar separation models in at-
mospheric flow.

In this paper, we present a stochastic model for the
separation between particles of a passive contaminant
released into a homogeneous, isotropic, and stationary
turbulent flow at high Reynolds numbers. When the
turbulence is isotropic, the orientation of the particle
pairs is equally distributed in all directions. Although
this is not the case in anisotropic turbulence (typical of
the atmosphere), a model solely for the magnitude of
the separation distance effectively averages over all ori-
entations of the separation vector, and the properties for
this distance are essentially equivalent to those in iso-
tropic turbulence. Therefore, we model only the mag-
nitude of separation, that is, the scalar separation, in-
stead of the three components of the separation vector;
the orientation of the pairs will be accounted for by
implicit averaging.

In homogeneous turbulence, the approach used by
Durbin (1980) proves convenient with its two systems
of equations—one for the motion of the center of mass
and one for the evolution of the separation. These two
systems are coupled in a straightforward manner, and
the relative dispersion can be solved independent of the
center-of-mass dispersion. In addition, if the turbulence
is isotropic, the orientation in space of each pair of
particles is unimportant, and the three equations for the
evolution of the separation vector reduce to a single
equation for the magnitude of separation (Durbin 1982).
For anisotropic atmospheric flow, provided that only the
separation magnitude is considered, the same simplifi-
cation to quasi-one-dimensional processes is available
and is discussed in section 2. This averaged statistic is
a robust indicator of typical separations within a cloud
regardless of detailed atmospheric conditions and can
be expected to be a measure of local dilution or levels
of internal fluctuations in the cloud.

To formulate our model in section 4, we use a direct
new formulation for the conditional acceleration that
satisfies the well-mixed condition as well as consistency
of the model with mean, variance, skewness, and kur-
tosis of the Eulerian distribution of velocity differences.

The simple model that results from this approach has
the advantage of very efficient computational times,
which enables it to be used in applied problems, for
example, within complex atmospheric flow models.

The dispersion model is applied to continuous
(plume) and instantaneous (puff ) releases from point
sources. Because the scale of the fluctuations at the
source is known to have an important effect on the
second-order statistics of concentration, five different
source sizes are considered with the focus on parame-
terizing this size dependence. This approach helps with
analyzing scaling properties for near-source decay of
internal fluctuations. The results presented in section 5
include simulations of mean-square concentration field

, mean-square relative separation , mean concen-2 2c r
tration , standard deviation of concentration sc, andc
intensity of concentration fluctuations sc/ . Also, a scal-c
ing law is defined that eliminates the dependence of
these statistics on the source size and leads to analytical
formulas describing their time decay. All of the simu-
lation results are compared with those obtained from
the application of the similarity theory in the inertial
range.

Before discussing the model development and fluc-
tuation calculations, we first elaborate (in section 2) on
the simplification for relative dispersion provided by
quasi-one-dimensional models. This identifies the scalar
separation for pairs of particles as key and, furthermore,
identifies the key Eulerian properties necessary for mod-
eling.

2. Application of relative diffusion in the
atmosphere

Practical atmospheric dispersion work with approx-
imations provided by Gaussian plume or puff models,
such as Industrial Source Complex (ISC3) and ‘‘CAL-
PUFF’’ (Environmental Protection Agency 1995a–c),
can describe bulk mean properties reasonably well with
only a basic understanding of the turbulence in the at-
mosphere. To make progress on describing fluctuations
of concentrations in atmospheric plumes in a similar
manner is, at first sight, beyond the scope of current
analytical techniques. This is mainly due to the com-
plexity of the poorly known two-point flow statistics.
For example, the nine two-point velocity correlations,

y (x )y (x ) (i, j 5 1, 2, 3), (1)i 1 j 2

where the bar represents ensemble averaging and the
subscripts i and j indicate vector components, are all
formal inputs into two-particle Lagrangian stochastic
models (Borgas and Sawford 1994a), but essentially
none are well known for realistic flows and for general
sampling positions x1 and x2. Thus the two-particle sto-
chastic problem seems likely to be beyond detailed ra-
tional description for practical atmospheric flows. How-
ever, when the essential piece of information is the mag-
nitude of the separation r 5 | r | , which is a simple
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scalar property (where r is the separation vector between
two particles), much simpler statistics are required. To
model generic properties of r, a quasi-one-dimensional
model is required: say a Lagrangian stochastic equation
for the rate of change, or separation velocity, u 5 dr/
dt, where t is time. The appropriate Eulerian statistics
for u are, however, novel. They are essentially averages
over space and all orientations of the separation vector.
Because u is defined as

u 5 [y (x 1 r) 2 y (x )]r /r,i 1 i 1 i (2)

where the convention of summation over repeated in-
dices is adopted, instead of (1) we have a statistic of
the form

2ri[y (x 1 r) 2 y (x )]i 1 i 15 67 8r

21 ri5 [y (x 1 r) 2 y (x )] dV , (3)E i 1 i 1 r5 64p r|r |5r

where the integral is over all angles of the separation
vector r (solid angles Vr). In addition, inhomogeneity
can be accounted for by spatially averaging further over,
say, x1. The detailed information required in (3) is not
generally explicitly available, but because the important
processes occur at small scale (e.g., while plumes re-
main smaller than the entire depth of the boundary
layer), it is possible to use local inertial-range forms
and to average over spatial variations of energy dissi-
pation rate, mean velocity, and turbulent kinetic energy.
The resulting averages for the fixed separation prop-
erties of ^ &, ^ &, ^ &, and ^ & represent bulk sepa-2 3 4u u u u
ration-rate properties representative of the relevant at-
mospheric flow domain. These are simple functions of
the separation r and, moreover, have simple inertial-
subrange representation for small scales (with a bulk-
averaged energy dissipation rate).

Because the plume structure is usefully thought of as
a bulk meander with internal structure (Luhar et al.
2000; Yee and Wilson 2000; de Haan and Rotach
1998a,b; Rizza et al. 2000), the bulk representative sep-
aration behavior is the critical property, and detailed
three-dimensional two-particle modeling is essentially
redundant. Thus, the fundamentally useful model for
applied concentration-fluctuation work is a stochastic
model for separation r and separation rate u, consistent
with the bulk-averaged moments. A remarkable thing
is that this problem is mathematically identical to the
problem in isotropic, homogeneous turbulence. The dif-
ference is in the detail of the spatial averages of the
two-point Eulerian moments, and this difference affects
the final parameters, with the local spatial structure (ig-
noring intermittency) being

2 2/3 2/3^u& 5 0, ^u & ; C ^« &r ,K

3 4 4/3 4/3^u & ; 2(4/5)^«&r, ^u & ; C ^« &r , (4)4

where the bar indicates ensemble averaging, and the
angled brackets indicate space averaging. For example,
^«& is the local mean energy dissipation rate «(x) at
position x in the boundary layer averaged over all po-
sitions x in the domain of interest (represented by angled
brackets), that is, over the important part of the plume
dispersal. The other constants in (4) are considered later,
but it is already possible to develop a generic atmo-
spheric model for relative dispersion, which is done in
section 4.

3. Basic equations for second-order concentration
statistics

In this section, we recall the general definition of
mean-square concentration according to the statistical2c
theory of two-particle dispersion and derive an equation
for near plume and puff centers in terms of scalar2c
separations in a frame of reference moving with the
center of mass of the contaminant cloud. A relative dis-
persion model predicts, at instants in time, the distri-
bution of separations for pairs of particles that were
released from known sources at a given prior time. Once
the joint pdf of the positions of two particles has been
calculated, it is used to calculate the two-point covari-
ance of concentration with the following expression
(see, e.g., Batchelor 1952; Thomson 1990):

c(x9, t)c(x0, t)

5 p(x9, x0; t | x9, x0; t )E E o o o

t ,to

3 33 S(x9, t )S(x0, t ) d x9 d x0 dt , (5)o o o o o o o

where the vectors x9 and x0 represent the respective
positions of particles labeled 1 and 2, the subscript o
indicates conditions at the initial time to, p(x9, x0;
t | , ; to) is the joint pdf of the positions of the twox9 x0o o

particles, and S(xo, to) is the source strength distribution,
that is, the distribution of the amount of material re-
leased per unit volume per unit time. The absolute sec-
ond moment of the concentration, (x, t), can be ob-2c
tained as the limit of (5) as x9 and x0 tend to the same
position x, at least to within some small separation of
a scale much smaller than cloud dimensions (Durbin
1980).

For internal structure well within an almost homo-
geneous cloud, (x, t) can be approximated by eval-2c
uating it in a frame of reference moving with the mean
advection velocity of a plume or puff and assuming that
the fluctuations are almost homogeneous, at least away
from the edge of the cloud. Another approach is to in-
tegrate (x, t) over the cloud cross section, so that a2c
net mean-square concentration (t) characterizes the2c
plume or puff (Brown and Sawford 2000). From these
simplifications, we can use p(0; t | ro; to) proportional
to p(x, x; t | , ; to), and (t) for (x, t), where ro

2 2x9 x0 c co o

5 2 . After this transformation, the time t afterx9 x0o o
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release corresponds to the distance x 5 Ut downwind
of the source, where U is the advection velocity.

Next, we use the backward dispersion relationship
p(0; t | ro; to) 5 p(ro; to | 0; t) for incompressible flows
(Thomson 1990), where p(ro; to | 0; t) is the probability
that two particles that are separated by the vector r (ø0)
at the time t were separated by the small band of vectors
ro to ro 1 d3ro at the time to.

If, in addition, we assume instantaneous release, the
source strength can be represented as S(xo, to) 5 c(xo,
to)d(to), where d is the Dirac delta function, and c(xo,
to) is the source concentration distribution. Note that
this representation is still a valid model for a plume,
that is, a continuous release from a compact source,
inasmuch as it is sufficient to represent c(xo, to) as a
virtual instantaneous line source, which starts from the
actual source and extends in the along-wind direction
(Thomson 1990).

Last, after averaging over all angles of the initial sep-
aration vector ro, we obtain the following expression:

`

2c (t) 5 p(r ; t | 0; t)q(r ) dr , (6)E o o o o

0

where r 5 | r | , p(ro; to | 0; t) 5 4p p(ro; to | 0; t) and2ro

q(ro) 5 . In the next section, wec(x , t )c(x 1 r , t )o o o o o

derive a stochastic model for scalar separations that will
be used to calculate p(ro; to | 0; t), and hence (t)2c
through (6).

4. Model formulation

The scalar separation r(t) between pairs of particles
is modeled by a system of two stochastic differential
equations, one for r itself, the other for its rate of change
u 5 dr/dt. The scalar u is the longitudinal component
of the three-dimensional velocity difference vector be-
tween two particles, namely

u 5 (y9 2 y0)r /r,i i i (7)

where the subscript i indicates a vector component, the
vectors v9 and v0 represent the respective velocities of
particles labeled 1 and 2, and the convention of sum-
mation over repeated indices is adopted. Again, for an-
isotropic flows we can formally define the angle-aver-
aged longitudinal velocity u in (7), which removes the
explicit role for orientation of the specific choices of r.

For simplicity, we explicitly assume incompressible
flows and isotropic turbulence in the high-Reynolds-
number limit for all separation scales. Because the rel-
ative acceleration of two particles at high Reynolds
number is practically uncorrelated in time (Monin and
Yaglom 1975, p. 370; Borgas and Sawford 1991,
1994b), we can assume that the joint evolution of r and
u is a Markov process and that the motion of indepen-
dent pairs of fluid particles can be modeled by the fol-
lowing stochastic differential equations:

1/2du(t) 5 a(u, r)dt 1 (2C «) dWo

dr(t) 5 u(t)dt, (8)

where dW are the random increments of a Wiener pro-
cess with zero mean and variance dt, and the drift term
a(u, r), which will be determined below from a Fokker–
Planck equation, incorporates Eulerian velocity struc-
ture functions and «. The coefficient of the random in-
crements, (2Co«)1/2, ensures the consistency of (8) with
the Lagrangian velocity structure function of the second
order in the inertial range, which is written for the ve-
locity of separation u as

2[u(t 1 dt) 2 u(t)] 5 2C «dt (dt k t ), (9)o h

where Co is a universal constant and th is the Kolmo-
gorov microtimescale [th 5 (n/«)1/2, where n is the ki-
nematic viscosity]. To date there is no consensus on the
value of Co. For example, Anand and Pope (1985) es-
timate Co ø 2 based on a comparison with wind tunnel
experiments on the thermal wake downstream of a heat-
ed wire in grid turbulence; Hanna (1981) obtains values
of Co ranging from about 2 to about 6, with an average
Co ø 4, from spectral analysis of the velocity of neutral
balloons released in the atmospheric boundary layer;
Sawford’s (1991) theoretical analysis supports values of
Co equal to or larger than 6, and recent direct numerical
simulation calculations of Lagrangian statistics for ho-
mogeneous turbulence in uniform shear flow are con-
sistent with a value of Co equal to 6 (Sawford and Yeung
2001). In our simulations, we use Co 5 6.

The model is derived first by assuming a functional
form for the relative acceleration a(u, r) and then by
imposing the well-mixed criterion as described by
Thomson (1987), modified by Kurbanmuradov and Sa-
belfeld (1995) for the case of scalar separation models.
We propose the following simple functional-form clo-
sure for a(u, r):

2a(u, r) 5 a(r) 1 b(r)u 1 g(r)u , (10)

where the coefficients a, b, and g are unknown func-
tions of r. This form, a quadratic function of u, is of
the same type as the one used by Franzese et al. (1999)
in the context of one-particle models for the convective
atmospheric boundary layer.

In accordance with the well-mixed criterion, below
we will determine a(u, r) by requiring consistency with
the Fokker–Planck equation associated with the sto-
chastic process (8).

The Eulerian pdf of the relative velocity pE(u; t | r),
which is obtained by sampling all particle pairs at a
given separation r, can be defined as the ensemble av-
erage of p(u, r; t | uo, ro; to) over the set of initial con-
ditions for three-dimensional pairs of trajectories (and
then using the Jacobians of the transformation to scalar
separation pdfs)
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p (u; t | r)E

2r o5 p(u, r; t | u , r ; t )p (u | r , t ) du dr . (11)E o o o E o o o o o2r

By means of (11) and assuming statistically stationary
conditions, the Fokker–Planck equation associated
with (8) transforms into the following equation of evo-
lution for pE(u; t | r) (Kurbanmuradov and Sabelfeld
1995):

2 2u ](r p ) ](ap ) ] pE E E5 2 1 C « , (12)o2 2r ]r ]u ]u

where pE [ pE(u | r). Because of the simple polynomial
form of (10), the following hierarchy of equations can
be obtained by multiplying (12) successively by powers
of u and then integrating over u:

n21 n n11a(r)u 1 b(r)u 1 g(r)u
n225 G /n 2 (n 2 1)C «u n 5 1, . . . , N, (13)n11 o

where
2 n1 ](r u )

G 5 . (14)n 2r ]r

System (13) involves the turbulence structure functions
and their derivatives with respect to r, as well as thenu

coefficients a, b, and g that appear in the drift term
(10). The unknowns a, b, and g are then obtained by
solving (13) for n 5 1, 2, and 3:

2 3
2 3 2 2G /(3u ) 2 u (G 2 2C «)/(2u ) 2 G /u4 3 o 2g(r) 5

2m 2 m 2 14 3

3G 2 2u g(r) 2 2C «3 ob(r) 5
22u

2a(r) 5 G 2 u g(r), (15)2

where m3 is the skewness and m4 is the kurtosis of pE(u;
t | r) (i.e., m3 5 /

3/2
and m4 5 /

2
). Therefore,3 2 4 2u u u u

the acceleration (10) is completely defined if the ve-
locity structure functions up to the fourth order and «
are known.

This model represents a very efficient and simple pa-
rameterization of the problem and is superior to arbitrary
assumptions about the functional form for pE, which is
the standard method for parameterizing Lagrangian sto-
chastic models. In fact, (13) shows that the full set of
moments is prescribed once the coefficients are set in
(15). Thus, the closure prescribes a form for pE(u; t | r)
that can be shown to be realistic. Furthermore, we know
from Borgas and Yeung (1998) that quadratic form rep-
resentations are a good fit to direct numerical simulation
data for conditional accelerations.

Turbulence velocity structure functions and Eulerian
probability of velocity differences

The velocity structure functions that are input to the
model through (15) are derived from the formulas given

in Borgas and Yeung (1998). These formulas were orig-
inally devised to fit results from direct numerical sim-
ulations of the turbulence at several different Reynolds
numbers. The structure functions are for the increment
u, which in the Eulerian sense becomes the standard
longitudinal velocity increment

u 5 y (x 1 r, x , x ) 2 y (x , x , x ), (16)1 1 2 3 1 1 2 3

with the indices labeling standard Cartesian axes in
three-dimensional space. In the context of complex at-
mospheric flows, these structure functions are inter-
preted as composite averages over longitudinal incre-
ments in all directions and possibly over various posi-
tions in the boundary layer. Nevertheless, the character
remains the same, with small-scale inertial-range prop-
erties blending into large-scale energy-containing prop-
erties.

In the limit as the Reynolds number tends to infinity
the following parameterizations for the structure func-
tions of second, third and fourth order are used:

1/3
1

2 2/3u (r) 5 2(«r) , (17)
2[ ]A 1 (r/L)2

4
4 1

3u (r) 5 2 «r , and (18)
2[ ]5 1 1 (r/L)

2/3
1

4 4/3u (r) 5 12(«r) , (19)
2[ ]A 1 (r/L)4

where L is a characteristic length scale for the energy-
containing eddies that is defined as L 5 /«, where sy

3sy

is the standard deviation of the turbulent velocity fluc-
tuations, and the constants A2 and A4 were determined
by requiring that the structure functions (17) and (19)
be consistent with inertial-range scaling. One obtains
A2 5 (2/CK)3 and A4 5 A2(3/m4I)3/2, where CK is the
constant in the classical Kolmogorov formula for the
second-order velocity structure function in the inertial
range, namely 5 CK(«r)2/3 (Kolmogorov 1941b), and2u
m4I is the value assumed by the kurtosis m4 in the inertial
range. Following the approach used by Borgas and
Yeung (1998), we assume CK 5 2.13 and m4I 5 3.4.

Expression (17) is similar to that introduced by Dur-
bin (1980) and since then widely used in relative dis-
persion modeling (see, e.g., Sawford and Hunt 1986;
Thomson 1990; Borgas and Sawford 1994a). This ex-
pression reduces to 5 CK(«r)2/3 in the inertial-range2u
limit, namely for h K r K L, where h 5 (n3/«)1/4 is
the Kolmogorov microscale. The third-order structure
function (18) similarly reduces, at inertial-range scales,
to the exact relationship 5 2(4/5)«r (Kolmogorov3u
1941a).

Expressions (17), (18), and (19) are also consistent
with the statistics of the Gaussian turbulence at large
separations. As r/L tends to infinity, tends to 2(«L)2/32u
[ 2 (thus ensuring a vanishing correlation between2sy

turbulent velocities at points separated by a length r k
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FIG. 1. Mean-square concentration predicted by the model, nor-2c
malized over the square concentration at the source , plotted as a2co

function of t/T for five values of the source size so ranging from 1024

L to L. The dashed line has a slope equal to 29/2.

L), vanishes, and tends to 3
2
, consistent with3 4 2u u u

the assumption that the pdf of the turbulent velocities
is Gaussian (Townsend 1947). In complex atmospheric
flows, such as convective turbulence, one-point statistics
are not Gaussian (in the vertical), so large separation
statistics will not tend to pure Gaussian behavior in the
large time limit. However, these effects are not exam-
ined in this paper because we focus on small-scale rel-
ative dispersion properties.

Our model is now completely defined, in very simple
terms, and because we did not assume any form for
pE(u | r), but only used its second, third, and fourth
moments, the drift term a is an algebraic function of u,
allowing efficient computations.

5. Model results

We now use the model to estimate values of , ,2c c
sc, and sc/ for the case of instantaneous and contin-c
uous releases from individual sources. Then, a simple
scaling law that determines self-similar results indepen-
dent of the source size is derived. Also, we derive an-
alytical formulas for , , and sc far from the source2c c
through an application of the earlier scaling law com-
bined with similarity theory relations and compare these
formulas with our simulations.

a. Mean-square internal fluctuation field

The mean-square concentration field (t) is calcu-2c
lated according to (6), which is reproduced here for
convenience:

`

2c (t) 5 p(r ; t | 0; t)q(r ) dr . (20)E o o o o

0

Equation (20) shows that (t) can be simply calculated2c
as (t) 5 (ro), where ro is a random variable whose2c q
pdf is p(ro; to | 0; t), with initial condition r 5 0.

Therefore, the numerical evaluation of (t) can be2c
performed efficiently by simulating the backward tra-
jectories of the released particles that have zero final
separation and covariance at the source equal to q(ro),
where ro is a random variable.

To simulate backward trajectories, the dispersion
model has to be written in a reverse form. However, the
reverse formulation of our stationary model is equiva-
lent to the forward formulation, in the sense that the
same stochastic differential equations governing the mo-
tion of pairs of particles [namely (8), (10), and (15)]
can be used to simulate backward trajectories, if the
forward variables are replaced by backward variables.
In other words, the equations are formally the same
provided that we interpret the time as running in the
opposite direction to real time and interpret the velocity
as representing a reverse separation velocity (Durbin
1982; Thomson 1987, 1990).

All simulations presented in this paper were made by

releasing 105 particle pairs and using a variable time
step dt(r) 5 1023 (r)/(2Co«). The function q(ro) 52u

exp[2 /(2 )] was assumed for the source term,2 2 2c r so o o

where so is a characteristic length scale of the source
and co is the concentration of the cloud center of mass
at the source. By definition, co ; Q/(U ) for a plume,2s o

where Q is the amount of contaminant released per unit
time and U is the mean wind velocity at the source, and
co ; M/ for a puff, where M is the amount of con-3s o

taminant released. Because the function q(ro)/ is the2co

same for both a plume and a puff, the calculated ,2c
normalized over , will also be the same for both plume2co

and puff releases. Figure 1 shows / , as predicted by2 2c co

the model, as a function of t /T, where T 5 /« is the2sy

Eulerian integral timescale of the turbulence. The sim-
ulations were performed for values of the source size
so ranging over four orders of magnitude, namely, from
so 5 1024L to L. As time increases, so the cloud size
increases, and hence fewer particle pairs converge on
the same position; thus, by definition, decreases. The2c
decay of with time shown in Fig. 1 depends on the2c
source size, with smaller sources decaying faster. The
dependence of the statistics of a fluctuating concentra-
tion field on the source size is a well-established phe-
nomenon, which was predicted by theoretical analyses
(Chatwin and Sullivan 1979), observed in wind tunnel
experiments for the case of continuous releases in a
turbulent boundary layer (Fackrell and Robins 1982),
and numerically simulated by Lagrangian stochastic
models (Durbin 1982; Thomson 1990).

Some time after the release, when the cloud size has
grown much larger than the source size but is still small-
er than L, the pdf of the particle separation, p(r, t | ro,
to), becomes independent of ro and scales according to
the similarity theory as p(r, t) } («t3)23/2 (Monin and
Yaglom 1975, p. 542). According to (20), we expect the
scaling (t) } («t3)23/2 to occur. Figure 1 shows that,2c
after an initial transient, the power-law time decay
matches the dashed line (proportional to t29/2) for sourc-
es smaller than L (e.g., so # 0.1 L). This indicates good
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FIG. 2. Nondimensional mean-square concentration / as a func-2 2c co

tion of the nondimensional variable t/( /«)1/3, predicted by the model2s o

for five values of so. The solid line represents (22), i.e., / 52 2c co

3.5 «23/2t29/2.3s o

agreement between our model results and the predic-
tions of the similarity theory.

1) DEPENDENCE OF THE MEAN-SQUARE

CONCENTRATION ON THE SOURCE SCALE

In the following, we show how a universal behavior
can be obtained for in the inertial range for plumes2c
and puffs released from different-sized sources.

The eddies that most efficiently disperse a cloud have
a characteristic length scale d of the same order of mag-
nitude as the cloud size. Therefore the initial timescale
of the relative dispersion of a cloud is determined by
the timescale of the eddies of the same size as the source.
Because the timescale of an eddy is given by (d2/«)1/3,
a cloud released from a generic source so disperses with
an initial timescale equal to ( /«)1/3. As a consequence,2s o

we expect that clouds released from different source
sizes will have similar at times t after release pro-2c
portional to their respective initial timescales. Moreover,
all statistics of the concentration field must depend on
the initial concentration co.

Therefore, we conclude that / as a function of the2 2c co

nondimensional time t 5 t/( /«)1/3 is independent of2s o

the source size so, and we can formally write
2 2c 5 c f (t), (21)o 1

where the function f1(t) is a universal function of the sole
variable t. As mentioned earlier, this behavior is expected
to occur as long as both so and the cloud size

1/2
belong2r

in the inertial range, that is, as long as the relationship
} «t3 holds.2r
Figure 2 shows the simulated / plotted as a func-2 2c co

tion of t. This figure was obtained by appropriately
scaling the data shown in Fig. 1. The data in Fig. 2 for
so 5 L are seen to decay more slowly than releases
from smaller sources because the universal behavior in
(21) is only valid if the cloud size does not exceed L.
We also note that the points obtained for the simulation
with so 5 0.1L deviate from the universal behavior

when t is larger than about 5, because t [ t/( /«)1/32s o

5 5 corresponds for this case to t ø T and hence
1/2

2r
5 O(L). These results show that once a cloud has
reached a size comparable with L its mean-square con-
centration starts decaying at a slower rate.

2) A UNIVERSAL TIME DECAY LAW FOR THE MEAN-
SQUARE CONCENTRATION

A single formula describing the decay of in plumes2c
and puffs released from different source sizes can be
derived by combining the similarity theory scaling (t)2c
} t29/2 with (21). Using f 1(t) 5 A[t/( /«)1/3]29/2, where2s o

A is a constant, gives
2 2 3 23/2 29/2c (t) 5 Ac s « t . (22)o o

The constant A was determined from the simulation re-
sults to be approximately equal to 3.5. From (22), is2c
estimated to be of order Q2/(U 2so

3/2
) for a plume and2r

M 2/(
3/2

) for a puff. Note that the estimated mag-3 2s ro

nitude of for a puff is consistent with that obtained2c
from a different approach by Chatwin and Sullivan
(1979). It follows that is much more sensitive to the2c
source size for a puff ( } ) than for a plume (2 23 2c s co

} ).21s o

The function (t)/ 5 3.5 «23/2t29/2 is plotted in2 2 3c c so o

Fig. 2 as a function of the nondimensional time t along
with our numerical simulations, showing very good
agreement.

b. Concentration fluctuations

The standard deviation of concentration sc is defined
as

22 1/2s (t) 5 [c (t) 2 c (t)] . (23)c

The mean concentration at the cloud center of mass was
evaluated as (t) 5 co / (t) for a plume and as (t)2 2c s r co

5 co /
3/2

for a puff, where (t) is the mean-square3 2 2s r (t) ro

separation between particles whose initial separation
was equal to so. Figure 3 shows our model results for

/L2 as a function of the nondimensional time t/T. The2r
classical inertial-range formula for point sources,

2 3r (t) 5 C «t , (24)r

where Cr is the Richardson–Obukhov constant, is also
plotted as the solid line in Fig. 3 for Cr 5 1.96, which
is the value obtained from our model. Monin and Yag-
lom (1975, p. 567) report several estimates of Cr ob-
tained by different authors on the basis of observations
from diffusion experiments in the atmosphere. Such es-
timates of Cr range over three orders of magnitude,
namely from ø0.008 to ø8, possibly because of the
difficulties in the simultaneous measurements of « and

. Ott and Mann (2000) more recently obtained Cr ø2r
0.5 from experiments in oscillating grid turbulence.
Thus, the value obtained by our model falls within the
observed values reported in the literature. However, the
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FIG. 3. Mean-square scalar separation normalized over L2, as a2r
function of the nondimensional time after release t/T, predicted by
the model for five values of so. The solid line represents (24) after
normalization for Cr 5 1.96, i.e., /L2 5 1.96(t/T )3.2r

FIG. 4. Nondimensional mean concentration /co as a function ofc
t/( /«)1/3, predicted by the model for five values of so: results for2s o

(a) simulated plumes and (b) simulated puffs. The solid lines plotted
in (a) and (b) represent (28) and (29), i.e., /co 5 «21t23 and21 2c C sr o

/co 5 «23/2t29/2, respectively.23/2 3c C sr o

FIG. 5. Nondimensional standard deviation of concentration sc/co

as a function of t( /«)1/3 for simulated plumes, predicted by the model2s o

for five values of so. The solid line represents (32), i.e., sc/co 5
1.87 «23/4t29/4.3/2s o

model-simulated Cr is strongly influenced by the as-
sumed velocity-structure constant Co in (9), whose value
is still not well established. For example, a sensitivity
test of our model to Co provided Cr ø 5 for Co 5 4
and Cr ø 1 for Co 5 8.

Using the same scaling arguments as for , we find2c
that , sc, and the intensity of fluctuations sc/ arec c
independent of the source size when they are written as
functions of the nondimensional time t 5 t/( /«)1/3;2s o

namely, we can write

c 5 c f (t), (25)o 2

s 5 c f (t), and (26)c o 3

s /c 5 f (t), (27)c 4

where the universal functions f 2, f 3, and f 4 [ f 3/ f 2

depend only on t.
Figures 4a,b show the model-simulated for plumec

and puff releases, respectively. As for the plot of 2c
shown in Fig. 2, it is clear that in each case (plume or
puff ) the data collapse to a single curve as long as the
cloud sizes do not exceed L. As expected from the def-
inition of , Figs. 4a,b show that the time decay ofc c
is much faster for a puff than for a plume. In the inertial
range these decays can be determined analytically,
yielding the following formulas:

21 2 21 23c(t) 5 C c s « t for a plume, and (28)r o o

23/2 3 23/2 29/2c(t) 5 C c s « t for a puff. (29)r o o

Formulas (28) and (29) are plotted in Figs. 4a and 4b,
respectively, where they fit well the inertial-range de-
cays of (t).c

Figure 5 shows the simulated sc/co as a function of
t for plumes released from five different-sized sources.
This figure also represents puff data reasonably well,
because sc/co is practically equivalent at both small and
large times.

An interesting implication of (26) (also seen in Fig.
5) is that the maximum sc does not depend on the source

size and that the maximum occurs at the same dimen-
sionless time t. Thus, from (26), we have the following
result:

(s ) 5 B c ,c max 1 o (30)

which is reached after a time
2 1/3t 5 B (s /«)max 2 o (31)

from the release. The values of the constants B1 and B2
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FIG. 6. Intensity of concentration fluctuations sc/ as a functionc
of t/( /«)1/3, predicted by the model for five values of so: results for2s o

(a) simulated plumes and (b) simulated puffs.

estimated by our model are B1 5 0.83 and B2 5 0.53
for plumes and B1 5 0.91 and B2 5 0.48 for puffs.

Because the square of the mean concentration, 2(t),c
is proportional to

22
for a plume and to

23
for2 2r (t) r (t)

a puff, it decays as 2(t) } t26 for a plume and as 2(t)c c
} t29 for a puff. Therefore, for large-enough times, 2(t)c
is negligible when compared with (t) (which scales2c
as t29/2 for both plume and puff releases), and (t) is2s c

equivalent to (t). Thus, at this stage of the cloud2c
growth (t * 3), by virtue of (26), we can write the
formula

1/2
2 3/2 23/4 29/4s (t) 5 c (t) 5 ÏAc s « t , (32)c o o

which is valid for both plumes and puffs, where the
constant is equal to 1.87. Formula (32) is plottedÏA
in Fig. 5, where it fits well with the simulations for
sources smaller than the integral length scale.

Figures 6a,b show the intensity of concentration fluc-
tuations sc/ for simulated plumes and puffs, respec-c
tively. At large times, sc/ for puffs is about two ordersc
of magnitude larger than for plumes. This effect is due
to the decay of , which is much faster for a puff thanc
for a plume, as described earlier.

c. Simple practical considerations for atmospheric
scaling

The universal scaling results are useful for practical
estimates of near-source plume behavior. In fact, source

sizes on the order of 1–10 m in, say, the convective
boundary layer, where the energy-containing eddies fill
the depth of the layer, with L ; 1 km, give ratios from
so/L ; 1023 to so/L ; 1022, with the small values
clearly demonstrating the potential role for inertial-
range processes. Indeed, many industrial chimney stacks
release plumes with scales in the inertial subrange. Com-
parisons between emissions and mixing of plumes from
different-size stack diameters may be made by collaps-
ing the fluctuation fields with the source-size scaling
used above. That is, the downstream development for
a larger source, say a 10-m-diameter stack, will take a
relatively longer time to develop than for a 1-m-di-
ameter stack, typically (10/1)2/3 5 4.6 times as long for
the scaled fluctuations to decay by the same amount.
Absolute measures are also available by using param-
eterized functions in (25), (26), and (27) and providing
data for co, but no explicit examples will be given here.
In more stable surface-layer processes, the turbulence
scales are much smaller, but applications will also often
involve smaller-scale sources.

6. Conclusions

Relative dispersion in atmospheric flow can be de-
scribed simply in terms of the magnitude of the sepa-
ration of generic pairs of particles averaged over the
plume domain, which is relevant for predicting and pa-
rameterizing internal concentration-fluctuation decay,
particularly in meandering plumes (Luhar et al. 2000).
The generic relative dispersion problem is equivalent in
form with simpler homogeneous isotropic turbulence,
but various constant factors require measurements of
two-point velocity statistics, or at least energy dissi-
pation statistics as functions of position in the mean-
plume envelope, for inertial-range modeling of internal
fluctuations. In this paper, a stochastic model of relative
dispersion in isotropic and homogeneous turbulence has
been derived using a new formulation for the acceler-
ation of separation with a focus on simple robust for-
mulation with efficient numerical solutions. The model
is consistent with a well-mixed distribution of particle
pairs and with the non-Gaussian turbulence statistics for
the Eulerian velocity differences. In the future it is to
be hoped that measurements of turbulence properties in
the atmosphere can be used for the development of mod-
els of scalar dissipation in flows with significant at-
mospheric stability effects.

To demonstrate some simple internal fluctuation char-
acteristics, the model has been applied to simulate plume
and puff releases from single sources with sizes ranging
over four orders of magnitude, namely, from 1024L to
L, using parameterized structure functions as input. Such
structure functions are consistent with the similarity the-
ory in the inertial range and with the hypothesis of zero
spatial autocorrelation of the Eulerian velocity at length
scales exceeding the integral scale L. As a consequence,
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the model correctly predicts the slower dispersion of a
cloud that grows larger than L.

The simulations of mean-square concentration ,2c
mean concentration , standard deviation of concentra-c
tion sc, and intensity of concentration fluctuations sc/

show the strong dependence of the results on thec
source size, consistent with observations, theoretical
predictions, and numerical simulations in the literature.
The results show a very good agreement with the pre-
dictions of the similarity theory. For instance, the model
reproduces the prescribed 29/2 exponent in the time
decay law for (t).2c

We have proposed a scaling law that determines a
universal behavior of , , and hence sc and sc/ for2c c c
all sources and cloud sizes within the inertial range. The
combined application of this scaling law along with the
similarity theory has led to general analytical formulas
for , , and sc, as well as to a simple formula for the2c c
maximum sc.

Future work with the current model clearly involves
coupling with meandering plume and puff models, em-
bedded within prognostic meteorological models. One-
particle mean field modeling of atmospheric plumes em-
bedded within more general Eulerian boundary layer
models is practical and useful (Luhar and Sawford 1995;
Anfossi et al. 1998; Nasstrom et al. 2000; Tinarelli et
al. 2000; Kurbanmuradov and Sabelfeld 2000; Stein et
al. 2000), and adapting simple two-particle relative dis-
persion models, at least the quasi-one-dimensional sca-
lar separation models, to the same ends seems to be
feasible. White-noise representation of fluid particle ac-
celerations is certainly a reasonable approximation for
atmospheric flows, despite known difficulties for such
representation for low-Reynolds-number flows (Heppe
1998). Also, for reasons of complexity and numerical
efficiency, highly sophisticated models of relative dis-
persion such as kinematic simulation (Flohr and Vas-
silicos 2000) are unlikely to be practical options for
modeling plume dispersion within routine meteorolog-
ical prognostic models (Hurley and Luhar 2000). The
current results suggest that Lagrangian stochastic mod-
els of relative dispersion (suitably averaged) are efficient
and simple enough for atmospheric applications; pos-
sible improvements within this class of models may be
needed to reduce the mean-square dispersion in the in-
ertial subrange, but this is not yet certain. Future de-
velopment involves the extension to nonstationary con-
ditions, expected for most atmospheric flows. It is also
hoped that measurements of atmospheric flows yield the
simplified two-point statistics that drive the current
model and that the combination of all these efforts leads
to operational prediction of concentration fluctuations
in atmospheric releases for routine air quality and hazard
response work.
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