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Abstract

A Lagrangian stochastic (LS) probability density function (PDF) model has been developed to study statistics and

PDF of concentration generated by continuous releases of passive substances from point and line sources in

atmospheric flow. The model simulates the combined effect of turbulent mixing (macromixing) and molecular

diffusivity (micromixing) on dispersion of tracers. Turbulent dispersion is modelled using an LS model; molecular

diffusivity is simulated by an interaction by exchange with the conditional mean (IECM) model. A dynamical

computational grid, which expands with time around the plume, has been developed to optimise computational time

and memory requirements. The model has been tested with the results of a two-particle LS model in homogeneous

turbulence and with wind tunnel observations in a neutral boundary layer. The proposed model can account for

chemical reactions in a direct way with no closure assumptions.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Concentration fluctuations; Micromixing modelling; Monte Carlo simulation; Turbulent dispersion; Chemical reactions
1. Introduction

Much research has been devoted to model the mean

concentration field of substances released in the atmo-

spheric boundary layer and modelling systems for mean

concentration are routinely applied in air quality

monitoring activities. Nevertheless, applications such

as study of toxic gas effects on humans (e.g., Griffith

and Megson, 1984; Hilderman et al., 1999), flammability

of substances (e.g., Wilson, 1995), and interaction

between turbulence and chemistry (e.g., Fox, 2003)
e front matter r 2004 Elsevier Ltd. All rights reserve
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require estimates of second and higher order moments of

concentration, or even the full one-time one-point

probability density function (PDF) of concentration.

LS fluctuating plume models (Luhar et al., 2000;

Cassiani and Giostra, 2002; Franzese, 2003) are valuable

tools for the estimation of all moments of concentration

of non-reactive scalars in the convective boundary layer

(CBL), and can be easily adapted to simulations in a

neutral boundary layer. These models use parameterised

in-plume relative concentration fluctuations because a

closed theory is not available, but experimental mea-

surements are scarce and case specific.

Georgopoulis and Seinfeld (1986) survey on reactive

plume models includes the PDF formulations of O’Brien

et al. (1976) and Dopazo (1976) ‘‘for completeness’’, as
d.
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they stated, because their applications in the atmosphere

required too intensive computational resources. Since

then, these models and the available computer power

have been greatly enhanced.

In a PDF formulation, the following equation for

the one-point one-time joint PDF for velocity and scalar

is derived from the Navier–Stokes equations (Pope,

1985):
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where angle brackets denote ensemble average, n is the

viscosity of the fluid, G is the molecular diffusivity of the

scalar, B is the sample space variable for scalar

concentration c (if multiple scalars are involved ca
represents the composition vector), v is the sample space

variable for the velocity vector u, and f cu ¼ f ðv; B; x; tÞ is

the Eulerian joint PDF of velocity and concentration.

The third term on the left hand side is the chemical

source, which appears in closed form—Eq. (1) is

typically applied to problems of turbulent combustion

mainly because of its property of including chemical

reactions without closure approximations (see e.g.,

Pope, 1985; Dopazo et al., 1997). On the right-hand

side, the first term represents the effect of viscous

stresses and pressure gradient and the last term is

associated with the transport in composition space by

molecular fluxes.

Pope (1994, 2000) and Heinz (2003) reviewed various

closures and modelling techniques for the viscous

stresses and pressure gradient terms in the form of

Lagrangian stochastic differential equations for velocity

and position of the fluid particles. In the one-particle

stochastic theory the one-point one-time PDF of

velocity is assumed to be known. The equations for

velocity and position are usually solved only for marked

particles released from the source, but they describe as

well the motion of all particles in the flow, according to

the well-mixed condition (Thomson, 1987).

The term associated with molecular diffusivity in Eq.

(1) defines the shape of the PDF of concentration, and

its closure is usually referred to as the micromixing

model. A micromixing model describes the evolution of

the PDF of concentration using an additional equation

for the concentration carried by each particle in the

domain. Therefore, a PDF model includes a set of

equations for velocity, position and concentration of

each fluid particle. This separation of the effects of

turbulent mixing and molecular processes is typical of a

variety of modelling approaches (see, e.g., the short

review by Kernstein, 1991).
Various micromixing models have been proposed so

far (see the review by Dopazo et al., 1997). Fox (2003)

reports a set of constraints and desirable properties

deduced from the conservation equations, DNS data

and experiments. Summarizing we can restate these

constraints as: (i) at high Reynolds number the mean

scalar fields must not be affected by micromixing; (ii)

micromixing must dissipate the fluctuations; (iii) the

scalar field must be bounded. A desirable property that

is often invoked is: (iv) for homogeneous turbulent

mixing (i.e., statistically homogeneous scalar fields in

homogeneous isotropic turbulence) the scalar PDF

should tend to a normal. Property (iv) is somewhat in

contrast with constraint (iii). Also, Chatwin (2004)

argued that the PDF should tend asymptotically to a

Dirac delta function about the mean, dðB� hciÞ; where

/cS tends to a positive value (mass/volume) in bounded

volumes and to zero in unbounded domains. However,

in general it is assumed that the Gaussian can be taken

as a reasonable approximation of the theoretical

asymptotic PDF.

The simplest and most common micromixing model

in turbulent combustion applications is the IEM model

(Interaction by Exchange with the Mean, Villermaux

and Devillon, 1972), also called LMSE model (Linear

Mean Square Estimation, Dopazo and O’Brien, 1974).

It is based on a linear relaxation of the local concentra-

tion towards the local mean,

hGr2cju ¼ v; c ¼ Bi ¼ �
1

tm
ðB� hciÞ (2)

with a characteristic time of relaxation tm, also

called micromixing time scale. The model reflects the

concept that the ultimate action of mixing is to

homogenise the concentration field, thus dissipating

the fluctuations. The relaxation towards the mean

mimics this dissipative behaviour. It can be shown that

the above equation is exact in the case of homogeneous

turbulent mixing of initially Gaussian scalar PDF (see

e.g., Pope, 2000).

This model has been applied to atmospheric turbu-

lence by Gonzalez (1997) using a Markov assumption on

the particle position (the traditional k-closure). In

Bisignanesi et al. (2002) the IEM model has been

coupled with a Thomson (1987) model for velocity and

position to simulate the laboratory experiments of

diffusion of reactive scalars (Li and Bilger, 1996). The

IEM model has the merit of simplicity but also two

major shortcomings. The first is the inability to fulfil

property (iv); in fact this model preserves the shape of

the PDF for a statistically homogeneous scalar field

(Pope, 2000). The importance of this shortcoming

depends on the application: for instance, property

(iv) is not a necessary condition for satisfactory

performance in inhomogeneous flows (Subramaniam

and Pope, 1998). The model correctly predicts the
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asymptotic Gaussian for homogeneous turbulent mixing

with a constant mean scalar gradient and, in general, the

correct asymptotic behaviour can be reached in the

presence of strong mean scalar inhomogeneities. The

second shortcoming is the inability to fulfil constraint (i)

due to the creation of spurious fluxes, which alter the

mean concentration field, as shown by Pope (1998) and

further investigated by Sawford (2004).

In order to solve the problem of spurious fluxes, a

modified IEM model, called IECM (Interaction by

Exchange with the Conditional Mean) was developed

(Fox, 1996; Pope, 1998). In this model, the concentra-

tion relaxes to the mean concentration conditioned over

the velocity

hGr2cju ¼ v; c ¼ Bi ¼ �
1

tm
ðB� hcju ¼ viÞ: (3)

In general, the relaxation towards a conditional

mean allows to better respect the principle of localness

(see Pope, 1998; Subramaniam and Pope, 1998),

i.e., particles that interact with each other have

similar position, velocity and concentration. Concep-

tually, one can think of velocity-conditioned

scalar mixing as occurring between fluid elements

that belong to the same physical eddy (Fox, 1996).

Sawford (2004) provided insight of the physical

foundations of this technique showing that it can be

related to a meandering plume model, and successfully

applied it to the dispersion of a passive scalar released

from a line source in grid-generated turbulence. Luhar

and Sawford (2005) used the IECM approach to

model concentration fluctuations in a convective

boundary layer. The IECM, like the IEM model, fails

to fulfil property (iv); in fact the two models are

equivalent in conditions of homogeneous turbulent

mixing since the velocity and the scalar are uncorrelated

(Fox, 1996).

In this paper, the IECM technique is used to develop a

model for the PDF of concentration of passive scalars.

The model is applied to releases in homogeneous

turbulence and in the atmospheric neutral boundary

layer. The complete set of model equations is introduced

in Section 2; a simple semi-empirical model for the

micro mixing time scale is described in Section 3.

An efficient algorithm based on a dynamical time-

expandable grid is developed and is described in Section

4. In Section 5, simulated concentration statistics

and PDF are compared with the results of Thomson’s

(1990) two-particle Lagrangian stochastic model

for homogeneous turbulence, and with Fackrell and

Robins (1982a) wind tunnel observations in a neutral

boundary layer.

In the following, we will not use the distinc-

tion between random and sample space variable:

we will simply refer to c as concentration and u as

velocity.
2. Model equations

The following set of stochastic differential equations

can be used to describe the evolution of velocity,

position and concentration of a passive particle:

dUi ¼ aiðX;U; tÞdt þ bijðX;U; tÞdzj ; (4)

dX i ¼ Uidt; (5)

dC ¼ jðC;X;U; tÞdt þ hðC;X;U; tÞdz; (6)

where the capital letters indicate particle (i.e., Lagran-

gian) quantities. U and X are the particle velocity and

position vectors respectively, C is the concentration

associated with the particle, dzj indicates a vector of

independent Wiener processes with zero mean and

variance dt (see Gardiner, 1983), and dz indicates

another independent Wiener process. The terms ai and

bij jointly model the term associated with viscous stresses

and pressure gradient in Eq. (1), the term j models the

conditional scalar dissipation term. Because the scalar is

passive, the velocity is independent of the concentration

field. In the case of reactive scalar, chemical reactions

can be included directly in the term j. In the case of

multiple scalars, C should be replaced by the concentra-

tion vector associated with the particle. The extension to

multiple reactive scalars requires some additional

assumptions (see Pope, 2000).

The above equations are based on a Markov

assumption for velocity and concentration. The validity

of a Markov assumption for velocity is discussed in

Thomson (1987) or Monin and Yaglom (1975) and is

usually accepted. The validity of a Markov assumption

for concentration is less explored, although Wandel et

al. (2003) show that its level of accuracy is comparable

to the Markov assumption for velocity. The use of a

stochastic differential equation for the particle concen-

tration also provides for a continuous evolution and

fulfils property (iv) (see Dopazo et al., 1997; Heinz,

2003). However, its implementation can be difficult

because the concentration field is bounded, and the

Wiener process should be substituted by a binomial

process, or by a dichotomic process to simplify the

computation (Dopazo et al., 1997).

We follow a simpler deterministic approach in the

formulation of the evolution equation for the concen-

tration of each particle, i.e.,

dC ¼ jðC;X;U; tÞdt: (7)

Eqs. (4), (5) and (7) correspond to the following

Fokker–Plank equation for the evolution of the Eulerian

joint PDF fcu
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with Bij ¼ bikbjk=2: From the comparison with Eq. (1) it

can be seen that the term j models the effect of

molecular diffusivity.

The coefficient j is specified according to the IECM

theory, i.e.,

dC

dt
¼ �

1

tm
ðC � hcjX;UiÞ; (9)

where hcjX;Ui is the ensemble mean concentration

conditioned on the particle position and particle velocity

vectors. The micromixing time scale tm will be defined in

the next section.

The coefficient bijðX;U; tÞ is obtained imposing con-

sistency with the Lagrangian structure function in the

inertial sub range, i.e., bij ¼ dijðC0�Þ
1=2; where C0 is the

Kolmogorov constant and e is the mean dissipation of

turbulent kinetic energy. The coefficient aiðX;U; tÞ is

obtained ensuring the fulfilment of the well-mixed

condition, namely the consistency of Eqs. (4) and (5)

with the marginal PDF of the Eulerian velocity f uðv; x; tÞ
through the following Fokker–Planck equation (Thom-

son, 1987)

@f u

@t
¼ �

@

@xi

ðuif uÞ �
@

@ui

ðaif uÞ þ
@2

@ui@uj

ðBijf uÞ; (10)

which provides

ai ¼
1

f u

@

@ui

ðBijf uÞ þ Fiðx; u; tÞ

� 	
(11)

with

@Fi

@ui

¼ �
@f u

@t
�

@

@xi

ðuif uÞ: (12)

Hereinafter, we will refer to turbulent velocities as the

velocity field. Mean wind speed and direction (i ¼ 1) are

assumed to be known. The classical meteorological

notation (x, y, z) ¼ (x1, x2, x3) and (u, v, w) ¼ (u1, u2, u3)

will be used instead of the indicial notation where more

convenient.

For emissions from a continuous point or line source

the dispersion in the along wind direction can be

neglected if su5hui: We use this assumption to reduce

the problem to two dimensions for point sources and to

one dimension for crosswind line sources.

For neutral boundary layer we use the form f u ¼

gu2
gu3

for the two-dimensional PDF of velocity in the

transverse directions, where g indicates a Gaussian

gui
¼

1ffiffiffiffiffiffi
2p

p
sui

exp �
u2

i

2s2
ui

 !
; (13)

where s2
ui
¼ hu2

i i: Thus, Eq. (4) for the transverse

velocity components can be written in explicit form:

dV ¼ W
@s2

v

@z
� C0�

� 	
V

2s2
v

dt þ ðC0�Þ
1=2dz2; (14)
dW ¼
1

2s2
w

@s2
w

@z
ðs2

w þ W 2Þ � C0�W

� 	
dt þ C0�ð Þ

1=2dz3;

(15)

where all turbulence statistics are evaluated at particle

position.

In homogeneous isotropic turbulence the above

equations simplify to a standard Ornstein–Uhlenbeck

process in both directions (Gardiner, 1983)

dUi ¼ �
C0�

2s2
ui

Ui dt þ ðC0�Þ
1=2dzi: (16)
3. The scalar micromixing time scale

In this section, we present a simple semi-empirical

formulation for the micromixing time scale. The

IECM conservation equation for the concentration

variance, s2
c � hc02i ¼ hðc � hciÞ2i can be obtained

from Eq. (8) is written, in the absence of a mean

velocity field, as

@hc02i

dt
þ

@huc02i

@xi

þ 2huic
0i
@hci

@xi

¼ �
2

tm
hc0

2
i � hhc0jui2iu

h i
;

(17)

which shows that tm is related to the square of a

conditional mean. In condition of homogeneous turbu-

lent mixing with no mean scalar gradient hc0jui ! 0

because the velocity and scalar fields are uncorrelated

(Fox, 1996). In this case, Eq. (17) is the same as for IEM

model.

The scalar dissipation rate, �c � 2Gh@c=xi @c=xii;
can be determined comparing Eq. (17) with the

standard Reynolds averaged equation for the concen-

tration variance, we can see that at high Reynolds

number: �c ¼ 2=tm½hc
02i � hhc0jui2iu�: From Eq. (17) and

the definition of the dissipation time scale of concentra-

tion variance tc � 2s2
c=�c we obtain the following

relation:

tm ¼ tc 1 � hhc0jui2iu
�
s2

c

� �
: (18)

The above relationship shows that for the IEM model

tm ¼ tc, while for the IECM model tm ¼ tc only in

conditions of homogeneous turbulent mixing with no

mean scalar gradient. Also, under these conditions

tcEt�k/e, where k is the turbulent kinetic energy. tc

is usually modelled according to this equilibrium

relation within a k�e modelling framework. Similarly,

tm is often modelled in PDF simulation using the IEM

model. Although this assumption is exact only for

homogeneous turbulent mixing, it is widely used and

several DNS simulations and laboratory experiments



ARTICLE IN PRESS

Table 1

Values of the ratio between turbulent and scalar dissipation time scale expressed as 2t=tc ¼ ðk�cÞ=ðs2
c�Þ

Authors 2t=tc Type of investigation Notes

Eswaran and Pope (1988) E2 DNS of homogeneous turbulent mixing

Overholt and Pope (1996) 1.8–3 DNS of homogeneous turbulent mixing

with constant mean scalar gradient

Systematic Re dependence

Heinz (2003) 2.5 Theoretical extrapolation from DNS data

of Overholt and Pope (1996)

Re-N

Warhaft (2000) 1.5 Measurements in decaying grid turbulence

with mean scalar gradient

Tavoularis and Corrsin (1981) 2.17–3.12 Measurements in homogeneous sheared

turbulence

Spalding (1971) 1.8 k�e modelling of round turbulent free jet

Warhaft and Lumley (1978) 0.6–2.4 Review of heated grid experiments

Pantano et al. (2003) 1.2–1.6 DNS of reacting planar shear layer Small Re dependence

Rogers et al. (1986, 1989) 1.6–2 DNS of homogenous turbulent shear flow

with different alignments of the mean

scalar gradient

Dependence on the alignment
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provide estimates of the constant of proportionality

between tc and t. Some of these estimates are reported in

Table 1.

In conditions of inhomogeneous turbulent mixing

(e.g., when the scalar length scale is smaller than the

turbulence length scale), t/tc is not constant. For

example, Thomson (1996) shows that in the inertial

subrange tc / t; based on similarity arguments, and

obtains the coefficient of proportionality as a function

of the type of instantaneous release (i.e., point

source, infinite line source, and infinite planar source).

However, for inhomogeneous mixing Eq. (18) shows

that for the IECM model tmatc; while it is still

reasonable to assume that tm / tc; and therefore that

tm depends on the source type, an exact relationship is

not available.

In the limit for tm-0, Eq. (17) yields s2
c ¼ hhc0jui2iu:

In this case, Sawford (2004) has shown that, for a

continuous point or line source in homogeneous

turbulence, s2
c obtained by the IECM model is the same

as that obtained by a meandering plume model (Gifford,

1959) in which a particular form of the two-point

velocity correlation is used in the relative expansion (see

also Cohen and Reynolds, 2000, Eqs. (3) and (4)).

Following Sawford (2004), this suggests that tm in

the IECM model is associated only to the concent-

ration fluctuations in the frame of reference relative to

the centre of mass and, therefore, to the relative

dispersion.

In our simulations of releases from localized sources

in homogeneous isotropic turbulence, tm was found to

tend to a constant only at large time, i.e., t45s2=�:
Because the experiments reported in this paper were

conducted for times smaller than 5s2=� we do not define

any relationship tm / t:
3.1. Homogeneous isotropic turbulence

Following Sawford (2004) and Sykes et al. (1984), we

assume tm ¼ mtr ¼ msr=sur at short and medium time,

where m is an empirical constant to be evaluated, sr is the

instantaneous plume spread and sur ¼ hu2
r i

1=2is the root

mean square (rms) of the relative velocity fluctuations, ur

indicates the difference between a turbulent velocity

component and the corresponding velocity component

of the instantaneous centre of mass.

sur is modelled using the following formulation

(Franzese, 2003):

s2
ur ¼ s2 sr

L

� �2=3

; (19)

where s2 is the variance of the turbulent velocity which

is the same in any direction because of isotropy, and

L ¼ ð3s2=2Þ3=2=� is a characteristic length scale of the

most energetic eddies. Eq. (19) acts as a time-dependent

high pass filter that defines s2
ur as the fraction of energy

contributing to the relative expansion at each stage of

the plume growth. This expression is strictly correct only

in the inertial sub range. When sr equals L all the energy

contributes to the expansion, and when sr grows larger

than L the constraint sur ¼ s is imposed. This formula-

tion defines tm / sr=sur ¼ ð3=2Þ1=2tðsr=LÞ2=3: If sr is

assumed as the characteristic length scale of the scalar

field, this model in the inertial sub range corresponds to

the phenomenological model reported by Fox (2003, Eq.

(3.15)). The inertial range scaling for tm was also

observed in the experiment by Baldyga et al. (1995). sr

is parameterised as

s2
r ¼

d2
r

1 þ ðd2
r � s2

0Þ=ðs
2
0 þ 2s2TLtÞ

; (20)
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where

d2
r ¼ Cr�ðt0 þ tÞ3 (21)

with t0 ¼ ½s2
0=ðCr�Þ�

1=3 ¼ ts=C1=3
r is the inertial range

formulation for dispersion from a finite source size

(Franzese, 2003), Cr is the Richardson–Obukhov con-

stant, s0 is the source size and TL ¼ 2s2=C0� is the

Lagrangian integral time scale. In our simulations, we

used Cr ¼ 0:3; in agreement with the value obtained by

Weil (1994) using the two-particle model of Thomson

(1990), and with the value reported in Borgas and

Sawford (1994). Parameterisation (20) ensures consis-

tency of sr and tm with the similarity theory of relative

dispersion in that sr ¼ s0 as t-0; sr ¼ dr for ts5t5TL;
and sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2TLt

p
for tbTL:

The asymptotic values for tm are:

tm ¼ mið3=2Þ1=2
ðs2

0=�Þ
1=3 as t ! 0;

tm ¼ mið3=2Þ1=2C1=3
r t for ts5t5TL;

tm ¼ mi

ffiffiffiffiffiffiffiffiffiffiffi
2TLt

p
for dXL and tbTL; ð22Þ

where i ¼ 1 for a continuous line source and i ¼ 2 for a

continuous point source. The coefficients mi were

empirically estimated from comparisons with the two-

particle LS model simulations of Thomson (1990) and

depend on the source geometry. For continuous line

sources, we find m1 ¼ ð3=2Þ�1=2: For continuous point

sources a smaller value should be chosen, as indicated by

the theoretical analysis of Thomson (1996) and by the

semi-empirical analysis of Sawford (2004) and Luhar

and Sawford (2005): we used m2 ¼ 0:8m1:
3.2. Neutral boundary layer (non-homogeneous non-

isotropic turbulence)

The definition of tm in a neutral boundary layer

follows the scheme outlined for homogeneous isotropic

turbulence. However, in this case the turbulence

statistics are not isotropic and not homogeneous. We

define a local mean velocity variance s2 by averaging the

variances of the three components of velocity, i.e., s2 ¼

ðs2
u þ s2

v þ s2
wÞ=3: A height-dependent tm is then eval-

uated in each cell of the discretized domain.

The equation for the relative expansion in the inertial

sub range, Eq. (21), is then discretized as

d2
r ðt þ DtÞ ¼ d2

r ðtÞ þ 3Cr�ðt0 þ tÞ2Dt; (23)

where the dissipation � ¼ �ðzÞ is calculated at the particle

position and d2
r ð0Þ ¼ s2

0: Parameterisation (20) is then

used, with the height-dependent quantities s2 and TL

calculated at the particle position. The constraint that

s2
r ðt þ DtÞ never becomes smaller than s2

r ðtÞ is also

enforced. The turbulence length scale L in Eq. (19) is

also local and is computed at each particle position.
Eq. (23) and tm are calculated using a small sub-

ensemble (5000 particles) of the total number of released

particles. The sub-ensemble is initially distributed uni-

formly around the source and is not subject to the

procedure of re-sampling and re-initialisation that is

used to implement the dynamical grid in the next section.

This ensures the necessary continuity of the particle

trajectories in the solution of Eq. (23). For each of these

particles tm is calculated at each time step as outlined in

Section 3.1. At each vertical level an averaged tm is

calculated by accounting for the contribution of each

particle in that cell, and is used in the discretized IECM

Eq. (9). Details of the averaging algorithm and

numerical integration are given in the next section.
4. Dynamical grid

In general, PDF modelling requires intensive compu-

tations because the equations of motion of a sample of

all fluid particles, i.e., particles uniformly distributed

over the domain, have to be solved. Chemical reactions

can be included in closed form if the equations are

solved in parallel. The computation is longer the smaller

the source size, because the grid should be refined in

order to provide details of the field around the source.

As a consequence, a large number of particles needs to

be simulated in order to have meaningful statistics at

each grid point. In this section we describe an efficient

numerical procedure based on a time expandable grid,

which optimises the calculation. We used 105 to 2� 107

particles, depending on source dimension and geometry,

as well as on the number of grid cells (typically 60� 60

cells were used). The dynamical grid effectively allows

the model to run on standard personal computers for

cases of practical interest, such as localized sources in

the atmosphere, at least for one and two-dimensional

simulations.

The notation ðziþ1=2; yjþ1=2Þ defines a cell centre, and

ðzi; yjÞ a node location in the physical space. The grid is

used to compute cell-averaged quantities and node-

averaged quantities, which are estimators of ensemble-

averaged quantities (see Pope, 1985, 2000 and references

therein). The cell-averaged quantities are computed

using a top hat kernel estimator k̂iþ1=2;jþ1=2ðz; yÞ centred

on the cell centre. Similarly, a cell-averaged quantity at a

given height z irrespective of the horizontal crosswind

location is computed using a one-dimensional kernel

k̂iþ1=2ðzÞ: Node-averaged quantities are computed using

a bi-linear interpolation kernel estimator
^̂
ki;jðz; yÞcentred

on the node. Thus the cell-averaged mth moment of

concentration at the point (x, y, z) is

hcm
iþ1=2;jþ1=2i ¼

PNp

n¼1ðk̂iþ1=2;jþ1=2ðZ;Y ÞCmÞnPNp

n¼1ðk̂iþ1=2;jþ1=2ðZ;Y ÞÞn

(24)
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Fig. 1. Example of a dynamical grid expansion around a plume

in a neutral boundary layer.
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and similarly for the node-averaged quantities hcm
i;ji:

Here Np is the total number of particles, (Z,Y) the

transverse position of each particle and C is the

concentration carried by each particle at the cell

location. The cell-averaged tm is independent of the

crosswind location and is calculated from the micro-

mixing time associated with a particle as

htmiþ1=2
i ¼

PNps

n¼1ðk̂iþ1=2ðZÞtmÞnPNps

n¼1ðk̂iþ1=2ðZÞÞn

; (25)

where Nps is the sub-ensemble of particles used in

nonhomogeneous conditions as defined in Section 3.2

above. Average quantities at any point in the domain

can be obtained from the node-averaged quantities

interpolating from the four surrounding nodes using a

bilinear basis function.

A possible solution to ensure an adequate particle

density in correspondence of the source is the use of

variable spaced structured or unstructured grids coupled

with techniques of particle splitting and merging as in

the work of Li and Modest (2001). We use a different

approach, which is simple and efficient. An initial

dynamical grid generated around the source is advected

by the mean field and expands around the plume as the

plume grows. The expansion involves both the number

of cells and their sizes. This procedure saves computa-

tional time and memory requirement, and can be

implemented as long as the velocity PDF is known. In

neutral boundary layer the local mean wind velocity,

averaged over the local depth of the plume was taken as

advection velocity, which varies with downwind distance

from the source. An example of a dynamical grid

expanding around a plume in a neutral boundary layer is

shown in Fig. 1, where not all nodes are displayed for

clarity purposes.

Since the grid extends also to the velocity space, the

two-dimensional physical grid corresponds to a four-

dimensional phase space grid. The grid is not uniform in

the velocity space, where each velocity class includes

approximately the same area under the PDF of velocity.

The node-averaged mth moments of concentration

conditioned on the velocity classes are calculated as

hðci;j;lþ1=2;mþ1=2Þ
m
i

¼ hðci;jjwlþ1=2; vmþ1=2Þ
m
i

¼

PNp

n¼1ð
^̂
ki;jðZ;Y Þk̂lþ1=2;mþ1=2ðW ;V ÞCmÞnPNp

n¼1ð
^̂
ki;jðZ;Y Þk̂lþ1=2;mþ1=2ðW ;VÞÞn

: ð26Þ

Therefore, the calculation proceeds according to the

following scheme:
(1)
 First, a small uniform grid is created around the

source. The grid is large enough to ensure that

the Gaussian concentration distribution centred at
the source is negligible at the boundary cells. The

initial particle velocity is extracted from the local

velocity PDF.
(2)
 The updated particle position and velocity are

calculated.
(3)
 Boundary conditions are checked. The physical

boundaries are treated as perfectly reflecting barriers

for particle position, velocity and concentration. The

computational boundaries are treated as absorbing

barriers for concentration. For non-Gaussian tur-

bulence a different procedure for the reflected

velocity should be used (Cassiani et al., 2005).
(4)
 Cell-averaged and node-averaged quantities are

computed and stored.
(5)
 hcjX;Ui is obtained interpolating hci;jjwlþ1=2; vmþ1=2i

and is used in the following discretized IECM

equation,

Cðt þ DtÞ ¼ CðtÞ � 1 � exp �
1

tm
Dt

� �� �
ðCðtÞ � hcjX;UiÞ;

(27)

where C(t)is the particle concentration.
(6)
 A grid expansion condition is checked. The condi-

tion is based on the ratio of minimum to maximum

cell-averaged mean concentration in each physical

direction. The amount of the fractional expansion in

each direction is determined from the rate of growth

of the mean plume spreads sy and sz at each time.

The expansion proceeds asymmetrically if the

computational domain reaches a physical boundary.
(7)
 After the expansion of the computational domain,

NE particles are sampled from the total number of
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particle NP and are uniformly positioned in the

fraction of computational domain just added with

zero concentration and a velocity extracted from the

local PDF. NE is calculated to ensure that the total

number of particles after expansion remains uni-

formly distributed in the computational domain.
(8)
 Finally, each grid cell is also expanded ensuring the

conservation of the number of particles in each cell.

A maximum cell size is imposed to ensure that the

grid does not artificially spread mean concentration

through the cell expansion process. In this case, the

number of cells is increased to not exceed the

maximum cell size.

Fig. 3. Variation of the intensity of concentration fluctuations

along the centreline of the plume with dimensionless time for a

continuous point source as predicted by our PDF-IECM model

(lines) and by Thomson (1990) two-particle model (solid

symbols), along with the observations from Fackrell and

Robins (1982a) experiments (open symbols). Different symbols

refer to different source sizes: m s0 ¼ 7:41 � 10�3s3=�; . s0 ¼
�2 �2
The integration time step in the model equations was

always one or two orders of magnitude smaller than the

minimum among: (i) the time scale defined by size of the

domain and rms velocity; (ii) the turbulence Lagrangian

time scale; and (iii) the micromixing time scale.

2:22 � 10 s3=�; ’ s0 ¼ 3:7 � 10 s3=�; E s0 ¼ 6:17�

10�2s3=�; K s0 ¼ 8:64 � 10�2s3=�:
5. Dispersion simulations in homogeneous isotropic

turbulence. Comparison with two-particle LSM

simulations and experiments

The intensity of concentration fluctuations sc=hci
along the centreline of the plume in homogeneous

isotropic turbulence was simulated for releases from a

point source and from an infinite line source. Fig. 2

shows the simulation results (continuous lines) for line

sources with source sizes ranging from s0 ¼ 10�3s3=� to

s0 ¼ 0:2s3=�; the symbols are the corresponding predic-

tions of Thomson’s (1990) two-particles model. Max-

imum values of sc=hci and locations of the maxima,

which are very sensitive to source size, are reproduced
2. Variation of the intensity of concentration fluctuations

g the centreline of the plume with dimensionless time for an

ite continuous line source as predicted by our model (lines)

by Thomson (1990) two-particle model (symbols). The lines

espond to the following source sizes s0; from left to right:

1s3=�; 0:002s3=�; 0:005s3=�; 0:01s3=�; 0:02s3=�; 0:05s3=�;
3=�; 0:2s3=�:
with minimal error. The time decay of sc=hci is also

satisfactorily captured although small differences cannot

be appreciated on a logarithmic scale.

The good agreement between our model and Thom-

son’s model is also apparent in Fig. 3, which shows

sc=hci for a point source, as a function of time on a

linear scale. The lines in Fig. 3 represent the results of

the PDF-IECM model, the solid symbols the results of

Thomson’s (1990) model. There are only minor differ-

ences between the predictions of the two models. Fig. 3

also shows the measurements of the wind tunnel

experiment of Fackrell and Robins (1982a) as originally

reported in Thomson (1990). The effects of anisotropy

and non-homogeneity, which are present in the experi-

ments, are neglected in these simulations. The initial

scalar distribution in the simulations was a Gaussian

with standard deviation s0 equal to the physical source

diameter. This choice may have a certain degree of

arbitrariness (see also the discussion in Fackrell and

Robins, 1982b). For instance, a different but still

reasonable choice is to assume the initial spread equal

to the radius instead of the diameter of the source (Sykes

et al., 1984). Another approximation in the comparison

with the experiment was introduced because the

simulated sc=hci is calculated along the plume centre-

line, whereas the observed sc=hci was calculated as the

ratio of maxðscÞ to maxðhciÞ which were not necessarily

measured at the same crosswind position. Because of the

above uncertainties, the good agreement between

experiment and simulations may be regarded as partially

fortuitous.

In the next section, anisotropy and non-homogeneity

in Fackrell and Robins (1982a) experiment will be
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accounted for in the simulations, and slightly different

source size definitions are found to provide more

accurate results.
Fig. 4. Vertical profiles of mean concentration hci scaled with

the maximum mean concentration max(hci) (a), and vertical

profiles of mean square concentration s2
c scaled with the

maximum concentration variance max(s2
c ) (b), at five down-

wind distances for an elevated source at 0.19 h and a source

diameter of 8.5 mm.
6. Dispersion simulations in neutral boundary layer—

comparisons with experiments

Fackrell and Robins (1982a) wind tunnel experiments

were designed mainly to examine the effects of source

sizes on concentration fluctuations from ground level

and elevated releases. The boundary layer generated in

the wind tunnel corresponds to an atmospheric neutral

boundary layer.

The observed velocity variance and dissipation

profiles were fit by analytical curves and used as an

input to our model. The mean wind averaged over the

local depth of the plume is used as advection velocity.

Shear effects were neglected. In general, the effects of

neglecting the shear are reduced as the distance from the

source increases because the mixing processes reduce the

mean gradients of concentration. For elevated releases,

crosswind and vertical meandering are the main source

of concentration fluctuations close to the source.

Therefore, this approximation is expected to be rela-

tively unimportant for elevated releases because the

shear close to the source is weaker and the plume nears

the ground at a distance from the source. For ground

level releases, neglecting the shear should cause an

underestimate of concentration fluctuations close to the

source. The approximation was not found to introduce

significant errors in any of the investigated cases. The

Kolmogorov constant for the Lagrangian velocity

structure function C0 ¼ 5 produced a good agreement

between simulated and observed mean concentration

fields. The simulated initial spread s0 was related to the

diameter Do of the physical source as s2
0 ¼ ð2=3ÞD2

o: This

value was found to give a good agreement in the

simulation of the initial growth of the fluctuation

intensity for all sources while, in general, the source

sizes does not significantly influence the mean field. All

results and observations presented were obtained at the

plume centreline y ¼ 0.

Fig. 4 a and b report vertical profiles of hci and s2
c ;

respectively, scaled by their maximum values along each

profile, at several distances from the source. The release

elevation was 0.19h, where h is the boundary layer

height. The lines refer to our simulations, the open

symbols to the experiments; the source diameter in the

experiments is 8.5 mm, which corresponds to a simulated

initial spread s0 � 7 mm: Fig. 4 shows that the simulated

maximum hci and maximum s2
c occur at different

elevations, especially far from the source, in very good

agreement with the experiments. In particular, the good

fit near the ground indicates that the definition of tm in
inhomogeneous turbulence outlined in Section 3.2

correctly captures the physics of the dispersion process,

and that the approximation introduced neglecting the

shear effects on the mean wind is acceptable.

Fig. 5 shows the variation with distance of the

maximum sc scaled with the maximum hci for elevated

and ground level releases. The elevated release experi-

ments were conducted for five different sources with

diameter ranging between 3 and 35 mm.The observa-

tions for the elevated release are reported as open
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Fig. 5. Measured and modelled concentration fluctuation

intensity defined as maximum root mean square concentration

maxðscÞ scaled with the maximum mean concentration maxðhciÞ

at each downwind distance. The open symbols are Fackrell and

Robins (1982a) experimental data for elevated releases with

source diameter: J 35 mm, B 25 mm, & 15 mm, , 8.5 mm and

n 3 mm; the solid lines are our simulations. The solid circles are

the experimental results for the ground level release with a

source diameter of 15 mm, the dashed line is our corresponding

simulation.

Fig. 6. (a) Measured and modelled mean concentration scaled

over the maximum value at each downwind distance. Solid

circles refer to the experimental observations of Fackrell and

Robins (1982a) in the downwind range 1.67ox/ho5.92. Open

symbols refer to model simulations: J x/h ¼ 1.67; n x/h ¼ 2.5;

B x/h ¼ 5. (b) Measured and modelled concentration variance

scaled over the maximum value at each downwind distance.

Solid squares refer to experimental observations of Fackrell and

Robins (1982a) in the downwind range 3.33ox/ho5.92. Open

symbols as already reported in (a). The vertical coordinate is

scaled with dz; which is defined as the vertical position of one

half the maximum value of the mean concentration.
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symbols, our simulations are plotted as continuous lines.

The solid circles are the observations for a ground level

source with a diameter of 15 mm; the dashed line is the

corresponding simulation.

Fig. 6 a and b show the observed and simulated

vertical profiles of hci and s2
c ; respectively, for the

ground level release with a source diameter of 15 mm for

all downwind distances. hci and s2
c are scaled with their

respective maxima at each downwind distance. The

elevation is scaled with the quantity dz, which is defined

as the elevation where hci is one half of its maximum

along the vertical profile. This type of scaling emphasizes

a self-similar behaviour with distance from the source

and allows the representation of the data at different

downwind distances in the same plot, as suggested by

Fackrell and Robins (1982a). The solid symbols in Fig. 6

refer to experimental results, the open symbols to

simulations. All measurements reported in Fig. 6a were

taken in the range 1.67ox/ho5.92; all measurements in

Fig. 6b were in the range 3.33ox/ho5.92. The open

symbols in both Fig. 6 a and b are simulation data

points at the three downwind distances x/h ¼ 1.67, 2.5

and 5.

Fig. 7 shows a comparison of modelled and measured

PDF of concentration f(c) at the downwind distance

x/h ¼ 4.79, at three different elevations. The observa-

tions indicate that f(c) has a clipped-gaussian like form

near the ground, and tends to an exponential like form

far from the ground. The simulation reproduces quite

well the observed f(c) at the elevated sampling location
z ¼ 0.38 h, but the agreement worsens at lower eleva-

tions, where the experiments indicate that f(c) relaxes

towards a clipped Gaussian and the simulation essen-

tially underestimates the probability of concentration

lower than the mean. This is possibly due to the

sensitivity of the evolution of the shape of f(c) generated

by the IECM model to the initial distribution of

concentration. In a statistically homogenous scalar field

the evolution of f(c) towards the correct asymptotic

shape can be obtained in the presence of a constant

mean scalar gradient. In general the stronger the mean

concentration gradient the smaller tm and the faster

the relaxation towards the asymptotic PDF. This

suggests that the IECM model performs better for
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Fig. 7. Probability density function of concentration f(c) at x/

h ¼ 4.79 and y/h ¼ 0 at different elevation from the ground: ’,

simulations for an elevated (z/h ¼ 0.19) release; m simulations

for a ground level release; B Fackrell and Robins (1982a)

experiment for an elevated (z/h ¼ 0.19) release.
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ground level releases where there are stronger gradients

of mean concentration and tm remains relatively small

for longer time. Since the observed f(c) at the measure-

ment distance is expected to be quite insensitive to the

source elevation, the simulation of a ground level release

in Fig. 7 matches the observations better than the

elevated release.
7. Conclusion

The PDF modelling is commonly applied to problems

of combustion turbulence and chemical engineering as

an effective technique to calculate the one point PDF of

passive and reactive scalars dispersing in turbulent flow.

We have applied this technique to the prediction of the
concentration PDF for releases from small sources in the

atmosphere under neutral conditions.

Our modelling is based on the micromixing modelling

approach used in the chemical engineering framework

coupled with the Lagrangian stochastic modelling used

in atmospheric dispersion studies.

The model is currently limited to two-dimensional

simulations but it can readily be applied to three-

dimensional releases neglecting the along wind disper-

sion and shear effects. The results were in overall good

agreement with Lagrangian two-particle model simula-

tions of releases from point and line sources in

homogeneous isotropic turbulence and with the wind

tunnel experiments of Fackrell and Robins (1982a) for

ground level and elevated releases from various source

sizes in the non-homogeneous turbulence of a neutral

boundary layer. The observed mean and rms concen-

tration in the neutral boundary layer are reproduced

with a negligible error. The simulation of the full

concentration PDF f(c) gives a satisfactory qualitative

and quantitative agreement, although discrepancies arise

in the comparison with f(c) near ground. These

discrepancies can be attributed to the simple form of

the IECM model and are expected to improve for

ground level releases.

More sophisticated formulations for the micromixing

model including a stochastic forcing and a more

elaborate definition of the term j in Eq. (6) can be

formulated as reported in, e.g., Valino and Dopazo

(1991), Heinz (2003), and Fox (2003). These formula-

tions ensure the relaxation of f(c) to a Gaussian form at

large time even for an initial homogeneous concentra-

tion field. However, the implementation of a stochastic

forcing is not straightforward because of the bounded-

ness of the scalar field. These models are less efficient

than a deterministic IECM model, and the expected

gain in accuracy may not justify their use in most

applications, nevertheless testing the performances

and computational requirements of alternate formula-

tions in atmospheric flow is an interesting task for

future studies.

The model developed in this paper was applied to

simulations of passive scalars. However, because the

particles are tracked in parallel it can account for

chemical reactions in a direct way with no closure

assumptions. The natural extension of this study

includes the complete simulation of atmospheric releases

of reactive substances including chemical reactions.
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